6,926 research outputs found

    Synthesis of Homo- and Heterobimetallic Ni\u3csup\u3eII\u3c/sup\u3e–M\u3csup\u3eII\u3c/sup\u3e (M = Fe, Co, Ni, Zn) Complexes Based on an Unsymmetric Ligand Framework: Structures, Spectroscopic Features, and Redox Properties

    Get PDF
    Several homo- and heterobimetallic NiII–MII complexes (MII = Fe, Co, Ni, Zn) supported by an unsymmetric polydentate ligand (L13−) are reported (L13− is the trianion of 2-[bis(2-hydroxy-3,5-tert-butylphenyl)aminomethyl]-4-methyl-6-[(2-pyridylmethyl)iminomethyl]phenol). The L13− chelate provides two distinct coordination environments: a planar tridentate {N2O} site (A) and a tetradentate {NO3} site (B). Reaction of L13− with equimolar amounts of NiII and MII salts provides bimetallic complexes in which the NiII ion exclusively occupies the tetragonal A-site and the MII ion is found in the tripodal B-site. X-ray crystal structures revealed that the two metal centers are bridged by the central phenolate donor of L13− and an anionic X-ligand, where X = μ-1,1-acetate, hydroxide, or methoxide. The metal ions are separated by 3.0–3.1 Å in the MAMBX structures, where MA and MB indicate the ion located in the A and B sites, respectively, and X represents the second bridging ligand. Analysis of magnetic data and UV–Vis–NIR spectra indicate that, in all cases, the two metal ions adopt high-spin states in solution. The NiAII centers undergo one-electron reduction at −1.17 V vs. SCE, while the NiII and CoII ions in the phenolate-rich B-site are reduced at lower potentials. Significantly, the NiAII center possesses three open or labile coordination sites in a meridional geometry, which are generally occupied by solvent-derived ligands in the crystal structures. The NiMBX complexes serve as structural mimics of heterometallic Ni-containing sites in biology, such as the C-cluster of carbon monoxide dehydrogenase (CODH)

    A Synthetic Model of the Nonheme Iron–Superoxo Intermediate of Cysteine Dioxygenase

    Get PDF
    A nonheme Fe(II) complex (1) that models substrate-bound cysteine dioxygenase (CDO) reacts with O2 at −80 °C to yield a purple intermediate (2). Analysis with spectroscopic and computational methods determined that 2 features a thiolate-ligated Fe(III) center bound to a superoxide radical, mimicking the putative structure of a key CDO intermediate

    A Synthetic Model of the Putative Fe(II)-Iminobenzosemiquinonate Intermediate in the Catalytic Cycle of \u3cem\u3eo\u3c/em\u3e-Aminophenol Dioxygenases

    Get PDF
    The oxidative ring cleavage of aromatic substrates by nonheme Fe dioxygenases is thought to involve formation of a ferrous–(substrate radical) intermediate. Here we describe the synthesis of the trigonal-bipyramdial complex Fe(Ph2Tp)(ISQtBu) (2), the first synthetic example of an iron(II) center bound to an iminobenzosemiquinonate (ISQ) radical. The unique electronic structure of this S = 3/2 complex and its one-electron oxidized derivative ([3]+) have been established on the basis of crystallographic, spectroscopic, and computational analyses. These findings further demonstrate the viability of Fe2+–ISQ intermediates in the catalytic cycles of o-aminophenol dioxygenases

    Preparation of a Semiquinonate-Bridged Diiron(II) Complex and Elucidation of its Geometric and Electronic Structures

    Get PDF
    The synthesis and crystal structure of a diiron(II) complex containing a bridging semiquinonate radical are presented. The unique electronic structure of this S = 7/2 complex is examined with spectroscopic (absorption, EPR, resonance Raman) and computational methods

    Spectroscopic and Computational Studies of Reversible O\u3csub\u3e2\u3c/sub\u3e Binding by a Cobalt Complex of Relevance to Cysteine Dioxygenase

    Get PDF
    The substitution of non-native metal ions into metalloenzyme active sites is a common strategy for gaining insights into enzymatic structure and function. For some nonheme iron dioxygenases, replacement of the Fe(II) center with a redox-active, divalent transition metal (e.g., Mn, Co, Ni, Cu) gives rise to an enzyme with equal or greater activity than the wild-type enzyme. In this manuscript, we apply this metal-substitution approach to synthetic models of the enzyme cysteine dioxygenase (CDO). CDO is a nonheme iron dioxygenase that initiates the catabolism of L-cysteine by converting this amino acid to the corresponding sulfinic acid. Two mononuclear Co(II) complexes (3 and 4) have been prepared with the general formula [Co2+(TpR2)(CysOEt)] (R = Ph (3) or Me (4); TpR2 = hydrotris(pyrazol-1-yl)borate substituted with R-groups at the 3- and 5-positions, and CysOEt is the anion of L-cysteine ethyl ester). These Co(II) complexes mimic the active-site structure of substrate-bound CDO and are analogous to functional iron-based CDO models previously reported in the literature. Characterization with X-ray crystallography and/or 1H NMR spectroscopy revealed that 3 and 4 possess five-coordinate structures featuring facially-coordinating TpR2 and S,N-bidentate CysOEt ligands. The electronic properties of these high-spin (S = 3/2) complexes were interrogated with UV-visible absorption and X-band electron paramagnetic resonance (EPR) spectroscopies. The air-stable nature of complex 3 replicates the inactivity of cobalt-substituted CDO. In contrast, complex 4 reversibly binds O2 at reduced temperatures to yield an orange chromophore (4-O2). Spectroscopic (EPR, resonance Raman) and computational (density functional theory, DFT) analyses indicate that 4-O2 is a S = 1/2 species featuring a low-spin Co(III) center bound to an end-on (η1) superoxo ligand. DFT calculations were used to evaluate the energetics of key steps in the reaction mechanism. Collectively, these results have elucidated the role of electronic factors (e.g., spin-state, d-electron count, metal–ligand covalency) in facilitating O2 activation and S-dioxygenation in CDO and related models

    Synchronization Properties of Network Motifs

    Get PDF
    We address the problem of understanding the variable abundance of 3-node and 4-node subgraphs (motifs) in complex networks from a dynamical point of view. As a criterion in the determination of the functional significance of a n-node subgraph, we propose an analytic method to measure the stability of the synchronous state (SSS) the subgraph displays. We show that, for undirected graphs, the SSS is correlated with the relative abundance, while in directed graphs the correlation exists only for some specific motifs.Comment: 7 pages, 3 figure

    Synthetic, Spectroscopic and DFT Studies of Iron Complexes with Iminobenzo(semi)quinone Ligands: Implications for o-Aminophenol Dioxygenases

    Get PDF
    The oxidative CC bond cleavage of o-aminophenols by nonheme Fe dioxygenases is a critical step in both human metabolism (the kynurenine pathway) and the microbial degradation of nitroaromatic pollutants. The catalytic cycle of o-aminophenol dioxygenases (APDOs) has been proposed to involve formation of an FeII/O2/iminobenzosemiquinone complex, although the presence of a substrate radical has been called into question by studies of related ring-cleaving dioxygenases. Recently, we reported the first synthesis of an iron(II) complex coordinated to an iminobenzosemiquinone (ISQ) ligand, namely, [Fe(Tp)(tBuISQ)] (2 a; where Tp=hydrotris(3,5-diphenylpyrazol-1-yl)borate and tBuISQ is the radical anion derived from 2-amino-4,6-di-tert-butylphenol). In the current manuscript, density functional theory (DFT) calculations and a wide variety of spectroscopic methods (electronic absorption, Mössbauer, magnetic circular dichroism, and resonance Raman) were employed to obtain detailed electronic-structure descriptions of 2 a and its one-electron oxidized derivative [3 a]+. In addition, we describe the synthesis and characterization of a parallel series of complexes featuring the neutral supporting ligand tris(4,5-diphenyl-1-methylimidazol-2-yl)phosphine (TIP). The isomer shifts of about 0.97 mm s−1 obtained through Mössbauer experiments confirm that 2 a (and its TIP-based analogue [2 b]+) contain FeII centers, and the presence of an ISQ radical was verified by analysis of the absorption spectra in light of time-dependent DFT calculations. The collective spectroscopic data indicate that one-electron oxidation of the FeII–ISQ complexes yields complexes ([3 a]+ and [3 b]2+) with electronic configurations between the FeIII–ISQ and FeII–IBQ limits (IBQ=iminobenzoquinone), highlighting the ability of o-amidophenolates to access multiple oxidation states. The implications of these results for the mechanism of APDOs and other ring-cleaving dioxygenases are discussed
    • …
    corecore