5 research outputs found

    Comparison of Six Commercial ELISA Kits for Their Specificity and Sensitivity in Detecting Different Major Peanut Allergens

    Get PDF
    Six commercial peanut enzyme-linked immunosorbent assay kits were assessed for their ability to recover peanut from the standard reference material 2387 peanut butter and also for their specificity in detecting four major peanut allergens, Ara h 1, Ara h 2, Ara h 3, and Ara h 6. The percentage recovery of peanut from peanut butter differed across different kits as well as at different sample concentrations. The highest recovery was observed with the Romer and R-Biopharm kits, while four other kits were found to underestimate the protein content of the reference peanut butter samples. Five of the kits were most sensitive in detecting Ara h 3 followed by Ara h 1, while hardly recognizing Ara h 2 and Ara h 6. The other kit showed the highest sensitivity to Ara h 2 and Ara h 6, while Ara h 1 and Ara h 3 were poorly recognized. Although Ara h 2 and Ara h 6 are known to be heat stable and more potent allergens, antisera specific to any of these four peanut proteins/allergens may serve as good markers for the detection of peanut residues

    Oral exposure to immunostimulating drugs results in early changes in innate immune parameters in the spleen

    No full text
    The development of immune-dependent drug hypersensitivity reactions (IDHR) is likely to involve activation of the innate immune system to stimulate neo-antigen specific T-cells. Previously it has been shown that, upon oral exposure to several drugs with immune-adjuvant capacity, mice developed T-cell-dependent responses to TNP-OVA. These results were indicative of the adjuvant potential of these drugs. The present study set out to evaluate the nature of this adjuvant potential by focusing on early immune changes in the spleen, by testing several drugs in the same experimental model. Mice were exposed to one or multiple oral doses of previously-tested drugs: the non-steroidal-anti-inflammatory drug (NSAID) diclofenac (DF), the analgesic acetaminophen (APAP), the anti-epileptic drug carbamazepine (CMZ) or the antibiotic ofloxacin (OFLX). Within 24 h after the final dosing, early innate and also adaptive immune parameters in the spleen were examined. In addition, liver tissue was also evaluated for damage. Exposure to APAP resulted in severe liver damage, increased levels of serum alanine aminotransferase (ALT) and local MIP-2 expression. DF exposure did not cause visible liver damage, but did increase liver weight. DF also elicited clear effects on splenic innate and adaptive immune cells, i.e. increased levels of NK cells and memory T-cells. Furthermore, an increase in plasma MIP-2 levels combined with an influx of neutrophils into the spleen was observed. OFLX and CMZ exposure resulted in increased liver weights, MIP-2 expression and up-regulation of co-stimulatory molecules on antigen-presenting cells (APC). The data suggested that multiple immune parameters were altered upon exposure to drugs known to elicit immunosensitization and that broad evaluation of immune changes in straightforward short-term animal models is needed to determine whether a drug may harbor the hazard to induce IDHR. The oral exposure approach as used here may be applied in the future as an immunotoxicological research tool in this type of evaluation

    Immune responses induced by diclofenac or carbamazepine in an oral exposure model using TNP-Ficoll as reporter antigen

    No full text
    <p>Immune-mediated drug hypersensitivity reactions (IDHR) may result from immuno-sensitization to a drug-induced neo-antigen. They rarely occur in patients and are usually not predicted preclinically using standard toxicity studies. To assess the potential of a drug to induce T-cell sensitization, trinitrophenyl (TNP)-Ficoll was used here as a bystander antigen in animal experiments. TNP-Ficoll will only elicit TNP-specific IgG antibodies in the presence of non-cognate T-cell help. Therefore, the presence of TNP-specific IgG antibodies after co-injection of drug and TNP-Ficoll was indicative of T-cell sensitization potential. This TNP-Ficoll-approach was used here to characterize T-cell help induced by oral exposure to diclofenac (DF) or carbamazepine (CMZ). DF or CMZ was administered orally to BALB/c mice and after 3 w, the mice were challenged in a hind paw with TNP-Ficoll and a dose of the drug that by itself does only elicit a sub-optimal popliteal lymph node assay (PLNA) response. T-cell-dependent responses were then evaluated in paw-draining popliteal lymph nodes (PLN). Also, shortly after oral exposure, mesenteric lymph nodes (MLN) were excised for evaluation of local responses. Both drugs were able to increase PLN cellularity and TNP-specific IgG<sub>1</sub> production after challenge. Both DF and CMZ stimulated CD4<sup>+ </sup>and CD8<sup>+</sup> T-cells and caused shifts of the subsets toward an effector phenotype. DF, but not CMZ, appeared to stimulate interferon (IFN)-γ production. Remarkably, depletion of CD8<sup>+</sup>, but not CD4<sup>+</sup>, T-cells reduced TNP-specific IgG<sub>1</sub> production, and was more pronounced in CMZ- than in DF-exposed animals. Local responses in the MLN caused by DF or CMZ also showed shifts of CD4<sup>+ </sup>and CD8<sup>+</sup>-cells toward a memory phenotype. Together, the data indicate that oral exposure to CMZ and DF differentially induced neo-antigen-specific T-cell reactions in the PLNA.</p
    corecore