11 research outputs found

    Mammals adjust diel activity across gradients of urbanization

    Get PDF
    Time is a fundamental component of ecological processes. How animal behavior changes over time has been explored through well-known ecological theories like niche partitioning and predator–prey dynamics. Yet, changes in animal behavior within the shorter 24-hr light–dark cycle have largely gone unstudied. Understanding if an animal can adjust their temporal activity to mitigate or adapt to environmental change has become a recent topic of discussion and is important for effective wildlife management and conservation. While spatial habitat is a fundamental consideration in wildlife management and conservation, temporal habitat is often ignored. We formulated a temporal resource selection model to quantify the diel behavior of 8 mammal species across 10 US cities. We found high variability in diel activity patterns within and among species and species-specific correlations between diel activity and human population density, impervious land cover, available greenspace, vegetation cover, and mean daily temperature. We also found that some species may modulate temporal behaviors to manage both natural and anthropogenic risks. Our results highlight the complexity with which temporal activity patterns interact with local environmental characteristics, and suggest that urban mammals may use time along the 24-hr cycle to reduce risk, adapt, and therefore persist, and in some cases thrive, in human-dominated ecosystems

    Public Complaints Reflect Rat Relative Abundance Across Diverse Urban Neighborhoods

    Get PDF
    Preventing infestations of rats is crucial for minimizing property damage and the transmission of rat-associated pathogens to humans. Due to the logistical challenges in assessing rat abundance over large areas, public officials must often use the number of public rat complaints to estimate the relative abundance of rats and the subsequent need for rodent control. However, the likelihood of reporting complaints may be driven by socioeconomic factors and therefore may not accurately reflect rat abundance. In this study, we tested whether the number of rat complaints reflect rat relative abundance and if rat complaints and abundance are higher in alleys with greater levels of harborage, food attractants, and poor structural integrity. We conducted this study in Chicago, IL, USA where public rat complaints have risen by 39% from 2008 up to 45,887 in 2017, and where socioeconomic factors vary considerably across neighborhoods. We assessed municipal rat complaints, census data, and land cover data for 77 community areas across Chicago. In collaboration with pest management professionals, we trapped brown rats (Rattus norvegicus) in alleys in 13 community areas that varied from low to high measures of household income and urban development. At trapping sites, we recorded signs of rat activity, attractants, and infrastructure condition. Based on candidate model comparisons using linear models, we found that rat complaints were most associated with rat trap success. Rat trap success was most associated with increasing complaints, percent of rented housing units, and decreasing vacant land. At a local scale, alleys with more complaints and higher trap success also had more uncontained garbage. Our results demonstrate that, at least in Chicago, public reporting can serve as a useful tool to identify areas of greater rat activity for targeted control efforts. Our study also suggests the need for habitat modification to minimize access to attractants. Finally, our results highlight how partnerships between researchers and private practitioners can facilitate large-scale projects on rat infestation risks in urban areas

    Assessing Values and Perceptions of Wildlife through Social Media: Data and R code

    No full text
    The comments made for the top 10 videos for each species, our categorization of those comments, and scripts used to summarize (retrieve_youtube.R), analyze (youtube_analysis.R; multinomial_youtube.R) and plot (youtube_analysis.R; my_vioplot.R) those comments

    Landscape-scale differences among cities alter common species’ responses to urbanization

    Get PDF
    Understanding how biodiversity responds to urbanization is challenging, due in part to the single-city focus of most urban ecological research. Here, we delineate continent-scale patterns in urban species assemblages by leveraging data from a multi-city camera trap survey and quantify how differences in greenspace availability and average housing density among 10 North American cities relate to the distribution of eight widespread North American mammals. To do so, we deployed camera traps at 569 sites across these ten cities between 18 June and 14 August. Most data came from 2017, though some cities contributed 2016 or 2018 data if it was available. We found that the magnitude and direction of most species\u27 responses to urbanization within a city were associated with landscape-scale differences among cities. For example, eastern gray squirrel (Sciurus carolinensis), fox squirrel (Sciurus niger), and red fox (Vulpes vulpes) responses to urbanization changed from negative to positive once the proportion of green space within a city was \u3e~20%. Likewise, raccoon (Procyon lotor) and Virginia opossum (Didelphis virginiana) responses to urbanization changed from positive to negative once the average housing density of a city exceeded about 700 housing units/km2. We also found that local species richness within cities consistently declined with urbanization in only the more densely developed cities (\u3e~700 housing units/km2). Given our results, it may therefore be possible to design cities to better support biodiversity and reduce the negative influence of urbanization on wildlife by, for example, increasing the amount of green space within a city. Additionally, it may be most important for densely populated cities to find innovative solutions to bolster wildlife resilience because they were the most likely to observe diversity losses of common urban species
    corecore