15 research outputs found

    How do nurses and teachers perform breast self-examination: are they reliable sources of information?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast cancer is the most common cause of cancer-related deaths among women worldwide. The aim of the present study was to determine and compare knowledge, behavior and attitudes among female nurses and teachers concerning breast self-examination (BSE).</p> <p>Methods</p> <p>Two-hundred and eighty nine women working in Aydin, Turkey (125 nurses and 164 teachers) were included in the study. The data were collected using a questionnaire designed to measure the knowledge, attitudes and behavior of the groups. Analysis involved percentiles, χ<sup>2 </sup>tests, <it>t </it>tests and factor analysis.</p> <p>Results</p> <p>The knowledge of nurses about BSE was higher than that of teachers (81.5% versus 45.1%; p < 0.001). BSE practice parameters (i.e. age groups, indications, frequency) were similar (p > 0.05), whereas skills in performing self-examination were higher in nurses (p < 0.001). Fear of having breast cancer is the most frequent reason for performing BSE. Among nurses, the reasons for failure to perform BSE were the absence of prominent breast problems (82%) and forgetting (56.4%). The teachers who did not perform BSE said that the reasons were lack of knowledge on how to perform self-examination (68.9%) and absence of problems (54%). Both groups had unacceptable technical errors in the performance of BSE.</p> <p>Conclusion</p> <p>We conclude that nurses and teachers should be supported with information enabling them to accomplish their roles in the community. To improve BSE practice, it is crucial to coordinate continuous and planned education.</p

    Intimate monolithic integration of chip-scale photonic circuits

    No full text
    In this paper, we introduce a robust monolithic integration technique for fabricating photonic integrated circuits comprising optoelectronic devices (e.g., surface-illuminated photodetectors, waveguide quantum-well modulators, etc.) that are made of completely separate epitaxial structures and possibly reside at different locations across the wafer as necessary. Our technique is based on the combination of multiple crystal growth steps, judicious placement of epitaxial etch-stop layers, a carefully designed etch sequence, and self-planarization and passivation steps to compactly integrate optoelectronic devices. This multigrowth integration technique is broadly applicable to most III-V materials and can be exploited to fabricate sophisticated, highly integrated, multifunctional photonic integrated circuits on a single substrate. As a successful demonstration of this technique, we describe integrated photonic switches that consume only a 300 × 300 μm footprint and incorporate InGaAs photodetector mesas and InGaAsP/InP quantum-well modulator waveguides separated by 50 μm on an InP substrate. These switches perform electrically-reconfigurable optically-controlled wavelength conversion at multi-Gb/s data rates over the entire center telecommunication wavelength band. © 2005 IEEE
    corecore