144 research outputs found

    First results from the CRESST-III low-mass dark matter program

    Full text link
    The CRESST experiment is a direct dark matter search which aims to measure interactions of potential dark matter particles in an earth-bound detector. With the current stage, CRESST-III, we focus on a low energy threshold for increased sensitivity towards light dark matter particles. In this manuscript we describe the analysis of one detector operated in the first run of CRESST-III (05/2016-02/2018) achieving a nuclear recoil threshold of 30.1eV. This result was obtained with a 23.6g CaWO4_4 crystal operated as a cryogenic scintillating calorimeter in the CRESST setup at the Laboratori Nazionali del Gran Sasso (LNGS). Both the primary phonon/heat signal and the simultaneously emitted scintillation light, which is absorbed in a separate silicon-on-sapphire light absorber, are measured with highly sensitive transition edge sensors operated at ~15mK. The unique combination of these sensors with the light element oxygen present in our target yields sensitivity to dark matter particle masses as low as 160MeV/c2^2.Comment: 9 pages, 9 figure

    Optimal Operation of Cryogenic Calorimeters Through Deep Reinforcement Learning

    Get PDF
    Cryogenic phonon detectors with transition-edge sensors achieve the best sensitivity to sub-GeV/c2 dark matter interactions with nuclei in current direct detection experiments. In such devices, the temperature of the thermometer and the bias current in its readout circuit need careful optimization to achieve optimal detector performance. This task is not trivial and is typically done manually by an expert. In our work, we automated the procedure with reinforcement learning in two settings. First, we trained on a simulation of the response of three Cryogenic Rare Event Search with Superconducting Thermometers (CRESST) detectors used as a virtual reinforcement learning environment. Second, we trained live on the same detectors operated in the CRESST underground setup. In both cases, we were able to optimize a standard detector as fast and with comparable results as human experts. Our method enables the tuning of large-scale cryogenic detector setups with minimal manual interventions

    A likelihood framework for cryogenic scintillating calorimeters used in the CRESST dark matter search

    Get PDF
    Cryogenic scintillating calorimeters are ultra- sensitive particle detectors for rare event searches, particularly for the search for dark matter and the measurement of neutrino properties. These detectors are made from scintillating target crystals generating two signals for each particle interaction. The phonon (heat) signal precisely measures the deposited energy independent of the type of interacting particle. The scintillation light signal yields particle discrimination on an event-by-event basis. This paper presents a likelihood framework modeling backgrounds and a potential dark matter signal in the two-dimensional plane spanned by phonon and scintillation light energies. We apply the framework to data from CaWO4-based detectors operated in the CRESST dark matter search. For the first time, a single likelihood framework is used in CRESST to model the data and extract results on dark matter in one step by using a profile likelihood ratio test. Our framework simultaneously fits (neutron) calibration data and physics (background) data and allows combining data from multiple detectors. Although tailored to CaWO4-targets and the CRESST experiment, the framework can easily be expanded to other materials and experiments using scintillating cryogenic calorimeters for dark matter search and neutrino physics

    Detector Development for the CRESST Experiment

    Get PDF
    Recently low-mass dark matter direct searches have been hindered by a low-energy background, drastically reducing the physics reach of the experiments. In the CRESST-III experiment, this signal is characterised by a significant increase of events below 200 eV. As the origin of this background is still unknown, it became necessary to develop new detector designs to reach a better understanding of the observations. Within the CRESST collaboration, three new different detector layouts have been developed, and they are presented in this contribution

    Light dark matter search using a diamond cryogenic detector

    Get PDF
    Diamond operated as a cryogenic calorimeter is an excellent target for direct detection of low-mass dark matter candidates. Following the realization of the first low-threshold cryogenic detector that uses diamond as absorber for astroparticle physics applications, we now present the resulting exclusion limits on the elastic spin-independent interaction cross-section of dark matter with diamond. We measured two 0.175 g CVD (Chemical Vapor Deposition) diamond samples, each instrumented with a Transition Edge Sensor made of Tungsten (W-TES). Thanks to the energy threshold of just 16.8 eV of one of the two detectors, we set exclusion limits on the elastic spin-independent interaction of dark matter particles with carbon nuclei down to dark matter masses as low as 0.122 GeV/c2. This work shows the scientific potential of cryogenic detectors made from diamond and lays the foundation for the use of this material as target for direct detection dark matter experiments

    DoubleTES detectors to investigate the CRESST low energy background: results from above-ground prototypes

    Get PDF
    In recent times, the sensitivity of low-mass direct dark matter searches has been limited by unknown low energy backgrounds close to the energy threshold of the experiments known as the low energy excess (LEE). The CRESST experiment utilises advanced cryogenic detectors constructed with different types of crystals equipped with Transition Edge Sensors (TESs) to measure signals of nuclear recoils induced by the scattering of dark matter particles in the detector. In CRESST, this low energy background manifests itself as a steeply rising population of events below 200 eV. A novel detector design named doubleTES using two identical TESs on the target crystal was studied to investigate the hypothesis that the events are sensor-related. We present the first results from two such modules, demonstrating their ability to differentiate between events originating from the crystal’s bulk and those occurring in the sensor or in its close proximity

    International multicenter propensity score matched study on laparoscopic versus open left lateral sectionectomy

    Get PDF
    Background: Despite a lack of high-level evidence, current guidelines recommend laparoscopic left lateral sectionectomy (LLLS) as the routine approach over open LLS (OLLS). Randomized studies and propensity score matched studies on LLLS vs OLLS for all indications, including malignancy, are lacking.Methods: This international multicenter propensity score matched retrospective cohort study included consecutive patients undergoing LLLS or OLLS in six centers from three European countries (January 2000-December 2016). Propensity scores were calculated based on nine preoperative variables and LLLS and OLLS were matched in a 1:1 ratio. Short-term operative outcomes were compared using paired tests.Results: A total of 560 patients were included. Out of 200 LLLS, 139 could be matched to 139 OLLS. After matching, baseline characteristics were well balanced. LLLS was associated with shorter operative time (144 (110-200) vs 199 (138-283) minutes, P &lt; 0.001), less blood loss (100 (50-300) vs 350 (100-750) mL, P = 0.005) and a 3-day shorter postoperative hospital stay (4 (3-7) vs 7 (5-9) days, P &lt; 0.001).Conclusion: This international multicenter propensity score matched study confirms the superiority of LLLS over OLLS based on shorter postoperative hospital stay, operative time, and less blood loss thus validating current guideline advice.</p

    Cisplatin-DNA adduct formation in patients treated with cisplatin-based chemoradiation: lack of correlation between normal tissues and primary tumor

    Get PDF
    Contains fulltext : 69595.pdf (publisher's version ) (Closed access)PURPOSE: In this study, the formation of cisplatin-DNA adducts after concurrent cisplatin-radiation and the relationship between adduct-formation in primary tumor tissue and normal tissue were investigated. METHODS: Three intravenous cisplatin-regimens, given concurrently with radiation, were studied: daily low-dose (6 mg/m(2)) cisplatin, weekly 40 mg/m(2), three-weekly 100 mg/m(2). A (32)P-postlabeling technique was used to quantify adducts in normal tissue [white blood cells (WBC) and buccal cells] and tumor. RESULTS: Normal tissue samples for adduct determination were obtained from 63 patients and tumor biopsies from 23 of these patients. Linear relationships and high correlations were observed between the levels of two guanosine- and adenosine-guanosine-adducts in normal and tumor tissue. Adduct levels in tumors were two to five times higher than those in WBC (P<0.001). No significant correlations were found between adduct levels in normal tissues and primary tumor biopsies, nor between WBC and buccal cells. CONCLUSIONS: In concurrent chemoradiotherapy schedules, cisplatin adduct levels in tumors were significantly higher than in normal tissues (WBC). No evidence of a correlation was found between adduct levels in normal tissues and primary tumor biopsies. This lack of correlation may, to some extent, explain the inconsistencies in the literature regarding whether or not cisplatin-DNA adducts can be used as a predictive test in anticancer platinum therapy

    Simulation-based design study for the passive shielding of the COSINUS dark matter experiment

    Full text link
    The COSINUS (Cryogenic Observatory for SIgnatures seen in Next-generation Underground Searches) experiment aims at the detection of dark matter-induced recoils in sodium iodide (NaI) crystals operated as scintillating cryogenic calorimeters. The detection of both scintillation light and phonons allows performing an event-by-event signal to background discrimination, thus enhancing the sensitivity of the experiment. The construction of the experimental facility is foreseen to start by 2021 at the INFN Gran Sasso National Laboratory (LNGS) in Italy. It consists of a cryostat housing the target crystals shielded from the external radioactivity by a water tank acting, at the same time, as an active veto against cosmic ray-induced events. Taking into account both environmental radioactivity and intrinsic contamination of materials used for cryostat, shielding and infrastructure, we performed a careful background budget estimation. The goal is to evaluate the number of events that could mimic or interfere with signal detection while optimising the geometry of the experimental setup. In this paper we present the results of the detailed Monte Carlo simulations we performed, together with the final design of the setup that minimises the residual amount of background particles reaching the detector volume.Comment: 12 pages, 7 figure
    • …
    corecore