883 research outputs found
Probing new physics in diphoton production with proton tagging at the Large Hadron Collider
The sensitivities to anomalous quartic photon couplings at the Large Hadron
Collider are estimated using diphoton production via photon fusion. The tagging
of the protons proves to be a very powerful tool to suppress the background and
unprecedented sensitivities down to \gev are obtained,
providing a new window on extra dimensions and strongly-interacting composite
states in the multi-TeV range. Generic contributions to quartic photon
couplings from charged and neutral particles with arbitrary spin are also
presented.Comment: 4 pages, 3 figure
A simplified protocol for detecting two systemic bait markers (Rhodamine B and iophenoxic acid) in small mammals
We developed a method of quantifying levels of fluorescence in the whiskers of wild stoats (Mustela erminea) using fluorescence microscopy and Axiovision 3.0.6.1 software. The method allows for discrimination between natural fluorescence present in or on a whisker, and the fluorescence resulting from the ingestion of the systemic marker Rhodamine B (RB), although some visual judgement is still required. We also developed a new high performance liquid chromatography (HPLC) protocol for detecting the systemic marker iophenoxic acid (IPA) in the blood of laboratory rats (Rattus norvegicus) and wild stoats. With this method, the blood of an animal that has consumed IPA can be tested for the presence of the foreign IPA compound itself. This is a more reliable test than the previous method, which measured the raised level of natural blood protein-bound iodine correlated with IPA absorption. The quantity of blood required from animal subjects is very small (10 ÎŒl), so the testing is less intrusive and the method can be extended to smaller species. The extraction technique uses methanol, rather than acids and heavy metal salts, thereby simplifying the procedure. Recovery of IPA is quantitative, giving a highly reliable reading. In experiments on captive rats the IPA method proved successful. Of 12 positively marked carcasses, two that had not been frozen for the 24 h before blood samples were taken showed relatively lower IPA levels. The same IPA detection method, as well as the whisker analysis for RB, was applied successfully to a population of wild stoats to which both Rhodamine B and IPA were made available at bait stations. The presence of both bait markers was detectable in rats for at least 21 days and in stoats for at least 27 days
Synthesis, Evaluation and Structural Studies of Antiproliferative Tubulin-targeting Azetidin-2-ones
A series of azetidin-2-ones substituted at positions 2, 3 and 4 of the azetidinone ring scaffold were synthesised and evaluated for antiproliferative, cytotoxic and tubulin binding activity. In these compounds, the cis double bond of the vascular targeting agent combretastatin A-4 is replaced with the azetidinone ring in order to enhance the antiproliferative effects displayed by combretastatin A-4 and prevent the cis/trans isomerization that is associated with inactivation of combretastatin A-4. The series of azetidinones was synthetically accessible via the Staudinger and Reformatsky reactions. Of a diverse range of heterocyclic derivatives, 3-(2-thienyl) analogue 28 and 3-(3-thienyl) analogue 29 displayed the highest potency in human MCF-7 breast cancer cells with IC50 values of 7nM and 10nM respectively, comparable to combretastatin A-4. Compounds from this series also exhibited potent activity in MDA-MB-231 breast cancer cells and in the NCI60 cell line panel. No significant toxicity was observed in normal murine breast epithelial cells. The presence of larger, bulkier groups at the 3-position, for example 3-naphthyl derivative 21 and 3-benzothienyl derivative 26, resulted in relatively lower antiproliferative activity in the micromolar range. Tubulin-binding studies of 28 (IC50=1.37ÎŒM) confirmed that the molecular target of this series of compounds is tubulin. These novel 3-(thienyl) ÎČ-lactam antiproliferative agents are useful scaffolds for the development of tubulin-targeting drugs
Selective Reflection Spectroscopy on the UV Third Resonance Line of Cs : Simultaneous Probing of a van der Waals Atom-Surface Interaction Sensitive to Far IR Couplings and of Interatomic Collisions
We report on the analysis of FM selective reflection experiments on the
6S1/2->8P3/2 transition of Cs at 388 nm, and on the measurement of the surface
van der Waals interaction exerted by a sapphire interface on Cs(8P3/2). Various
improvements in the systematic fitting of the experiments have permitted to
supersede the major difficulty of a severe overlap of the hyperfine components,
originating on the one hand in a relatively small natural structure, and on the
other hand on a large pressure broadening imposed by the high atomic density
needed for the observation of selective reflection on a weak transition. The
strength of the van der Waals surface interaction is evaluated to be 7310
kHz.m3. An evaluation of the pressure shift of the transition is also
provided as a by-product of the measurement. We finally discuss the
significance of an apparent disagreement between the experimental measurement
of the surface interaction, and the theoretical value calculated for an
electromagnetic vacuum at a null temperature. The possible influence of the
thermal excitation of the surface is evoked, because, the dominant
contributions to the vW interaction for Cs(8P3/2) lie in the far infrared
range.Comment: submitted to Laser Physics - issue in the memory of Herbert Walther
Exploring the van der Waals Atom-Surface attraction in the nanometric range
The van der Waals atom-surface attraction, scaling as C3 z-3 for z the
atom-surface distance, is expected to be valid in the distance range 1-1000 nm,
covering 8-10 orders of magnitudes in the interaction energy. A Cs vapour
nanocell allows us to analyze the spectroscopic modifications induced by the
atom-surface attraction on the 6P3/2->6D5/2 transition. The measured C3 value
is found to be independent of the thickness in the explored range 40-130 nm,
and is in agreement with an elementary theoretical prediction. We also discuss
the specific interest of exploring short distances and large interaction
energy.Comment: to appear in Europhysics Letter
- âŠ