12 research outputs found

    Ribosomal DNA methylation in human and mouse oocytes increases with age

    Get PDF
    An age-dependent increase in ribosomal DNA (rDNA) methylation has been observed across a broad spectrum of somatic tissues and the male mammalian germline. Bisulfite pyrosequencing (BPS) was used to determine the methylation levels of the rDNA core promoter and the rDNA upstream control element (UCE) along with two oppositely genomically imprinted control genes (PEG3 and GTL2) in individual human germinal vesicle (GV) oocytes from 90 consenting women undergoing fertility treatment because of male infertility. Apart from a few (4%) oocytes with single imprinting defects (in either PEG3 or GTL2), the analyzed GV oocytes displayed correct imprinting patterns. In 95 GV oocytes from 42 younger women (26-32 years), the mean methylation levels of the rDNA core promoter and UCE were 7.4±4.0% and 9.3±6.1%, respectively. In 79 GV oocytes from 48 older women (33-39 years), methylation levels increased to 9.3±5.3% (P = 0.014) and 11.6±7.4% (P = 0.039), respectively. An age-related increase in oocyte rDNA methylation was also observed in 123 mouse GV oocytes from 29 4-16-months-old animals. Similar to the continuously mitotically dividing male germline, ovarian aging is associated with a gain of rDNA methylation in meiotically arrested oocytes. Oocytes from the same woman can exhibit varying rDNA methylation levels and, by extrapolation, different epigenetic ages

    Lipid droplets in mammalian eggs are utilized during embryonic diapause

    Get PDF
    Embryonic diapause (ED) is a temporary arrest of an embryo at the blastocyst stage when it waits for the uterine receptivity signal to implant. ED used by over 100 species may also occur in normally “nondiapausing” mammals when the uterine receptivity signal is blocked or delayed. A large number of lipid droplets (LDs) are stored throughout the preimplantation embryo development, but the amount of lipids varies greatly across different mammalian species. Yet, the role of LDs in the mammalian egg and embryo remains unknown. Here, using a mouse model, we provide evidence that LDs play a crucial role in maintaining ED. By mechanical removal of LDs from zygotes, we demonstrated that delipidated embryos are unable to survive during ED. LDs are not essential for normal prompt implantation, without ED. We further demonstrated that with the progression of ED, the amount of intracellular lipid reduces, and composition changes. This decrease in lipid is caused by a switch from carbohydrate metabolism to lipid catabolism in diapausing blastocysts, which also exhibit increased release of exosomes reflecting elevated embryonic signaling to the mother. We have also shown that presence of LDs in the oocytes of various mammals positively corelates with their species-specific length of diapause. Our results reveal the functional role of LDs in embryonic development. These results can help to develop diagnostic techniques and treatment of recurrent implantation failure and will likely ignite further studies in developmental biology and reproductive medicine fields

    Outcome of refractory and relapsed acute myeloid leukemia in children treated during 2005-2011 : experience of the Polish Pediatric Leukemia/Lymphoma Study Group (PPLLSG)

    Get PDF
    AIM OF THE STUDY: Recent studies showed relatively better outcome for children with refractory (refAML) and relapsed acute myeloid leukemia (relAML). Treatment of these patients has not been unified within Polish Pediatric Leukemia/Lymphoma Study Group (PPLLSG) so far. The goal of this study is to analyze the results of this therapy performed between 2005–2011. MATERIAL AND METHODS: The outcome data of 16 patients with refAML and 62 with relAML were analyzed retrospectively. Reinduction was usually based on idarubicine, fludarabine and cytarabine with allogenic hematopoietic stem cell transplant (alloHSCT) in 5 refAML and 30 relAML children. RESULTS: Seventy seven percent relAML patients entered second complete remission (CR2). Five-year OS and disease-free survival (DFS) were estimated at 16% and 30%. The outcome for patients after alloHSCT in CR2 (63%) was better than that of those not transplanted (36%) with 5-year OS of 34% vs. 2-year of 7% and 5-year DFS of 40% vs. 12.5%. Second complete remission achievement and alloHSCT were the most significant predictors of better prognosis (p = 0.000 and p = 0.024). The outcome of refAML children was significantly worse than relAML with first remission (CR1) rate of 33%, OS and DFS of 25% at 3 years and 53% at 2 years, respectively. All survivors of refAML were treated with alloHSCT after CR1. CONCLUSIONS: The uniform reinduction regimen of the documented efficacy and subsequent alloHSCT in remission is needed to improve the outcome for ref/relAML children treated within PPLLSG. The focus should be on the future risk-directed both front and second line AML therapy

    Development of treatment and clinical results in childhood acute myeloid leukemia in Poland

    Get PDF
    BACKGROUND: Since 1983 four consecutive unified regimens: acute myeloid leukemia-Polish pediatric leukemia/lymphoma study group (AML-PPLLSG) 83, AML-PPLLSG 94, AML-PPLLSG 98 and AML-BFM 2004 Interim, for AML have been conducted by the Polish Pediatric Leukemia/Lymphoma Study Group (PPLLSG). In this paper, we review four successive studies on the basis of acute myeloid leukemia-Berlin–Frankfurt–Munster (AML-BFM) protocol, in which a stepwise improvement of treatment outcome was observed. Treatment results of the last protocol AML-BFM 2004 Interim are presented in detail. METHODS: Three hundred and three patients with de novo AML were treated according to the AML-BFM 2004 Interim at 15 Polish centers from January 1, 2005 to June 30, 2011. A confrontation with previous treatment periods was based upon historical, already published data. RESULTS: In four consecutive periods, 723 children were eligible for evaluation (208, 83, 195, and 237, respectively). Complete remission rates in consecutive periods were: 71, 68, 81 and 87 %, respectively. The 5-year overall survival rates, event-free survival rates, and relapse-free survival rates were 33, 32, and 45%, respectively for AML-PPLLSG 83 regimen; 38, 36, and 53 % respectively for AML-PPLLSG 94 regimen; 53, 46, and 65 % respectively for AML-PPLLSG 98 regimen, and 63, 52, and 64 % for AML–BFM Interim 2004, respectively. Incidence of early deaths and that due to complications (mainly infections) in the first remission decreased over time from 22 to 4.6 % and from 10 to 5.9 %, respectively. CONCLUSIONS: Despite continuous improvement in the treatment outcome, the number of failures still remains too high. Further progress seemed to be possible due to continued cooperation of oncology centers within large international study groups

    Osteopontin and fatty acid binding protein in ifosfamide-treated rats

    No full text
    Ifosfamide (IF) is a cytostatic that exhibits adverse nephrotoxic properties. Clinically, IF-induced nephrotoxicity takes various forms, depending on applied dose and length of treatment

    Hypoxia enhances anti-fibrotic properties of extracellular vesicles derived from hiPSCs via the miR302b-3p/TGFβ/SMAD2 axis

    Get PDF
    Abstract Background Cardiac fibrosis is one of the top killers among fibrotic diseases and continues to be a global unaddressed health problem. The lack of effective treatment combined with the considerable socioeconomic burden highlights the urgent need for innovative therapeutic options. Here, we evaluated the anti-fibrotic properties of extracellular vesicles (EVs) derived from human induced pluripotent stem cells (hiPSCs) that were cultured under various oxygen concentrations. Methods EVs were isolated from three hiPSC lines cultured under normoxia (21% O2; EV-N) or reduced oxygen concentration (hypoxia): 3% O2 (EV-H3) or 5% O2 (EV-H5). The anti-fibrotic activity of EVs was tested in an in vitro model of cardiac fibrosis, followed by a detailed investigation of the underlying molecular mechanisms. Sequencing of EV miRNAs combined with bioinformatics analysis was conducted and a selected miRNA was validated using a miRNA mimic and inhibitor. Finally, EVs were tested in a mouse model of angiotensin II-induced cardiac fibrosis. Results We provide evidence that an oxygen concentration of 5% enhances the anti-fibrotic effects of hiPS-EVs. These EVs were more effective in reducing pro-fibrotic markers in activated human cardiac fibroblasts, when compared to EV-N or EV-H3. We show that EV-H5 act through the canonical TGFβ/SMAD pathway, primarily via miR-302b-3p, which is the most abundant miRNA in EV-H5. Our results show that EV-H5 not only target transcripts of several profibrotic genes, including SMAD2 and TGFBR2, but also reduce the stiffness of activated fibroblasts. In a mouse model of heart fibrosis, EV-H5 outperformed EV-N in suppressing the inflammatory response in the host and by attenuating collagen deposition and reducing pro-fibrotic markers in cardiac tissue. Conclusions In this work, we provide evidence of superior anti-fibrotic properties of EV-H5 over EV-N or EV-H3. Our study uncovers that fine regulation of oxygen concentration in the cellular environment may enhance the anti-fibrotic effects of hiPS-EVs, which has great potential to be applied for heart regeneration. Graphical Abstrac
    corecore