26 research outputs found

    The in vitro effects of resistin on the innate immune signaling pathway in isolated human subcutaneous adipocytes

    Get PDF
    Context: Obesity-associated inflammation is a contributory factor in the pathogenesis of type 2 diabetes mellitus (T2DM); the mechanisms underlying the progression to T2DM are unclear. The adipokine resistin has demonstrated pro-inflammatory properties in relation to obesity and T2DM. Objective: To characterize resistin expression in human obesity and address the role of resistin in the innate immune pathway. Furthermore, examine the influence of lipopolysaccharide, recombinant human resistin (rhResistin), insulin and rosiglitazone in human adipocytes. Finally, analyze the effect of rhResistin on the expression of components of the NF-κB pathway and insulin signaling cascade. Methods: Abdominal subcutaneous adipose tissue was obtained from patients undergoing elective liposuction surgery (n = 35, aged: 36-49 yr; BMI: 26.5 ± 5.9 kg/m2). Isolated adipocytes were cultured with rhResistin (10-50 ng/ml). The level of cytokine secretion from isolated adipocytes was examined by ELISA. The effect of rhResistin on protein expression of components of the innate immune pathway was examined by Western blot. Results: In-vitro studies demonstrated that antigenic stimuli increase resistin secretion (P < 0.001) from isolated adipocytes. Pro-inflammatory cytokine levels were increased in response to rhResistin (P < 0.001); this was attenuated by rosiglitazone (P < 0.01). When examining components of the innate immune pathway, rhResistin stimulated Toll-like receptor-2 protein expression. Similarly, mediators of the insulin signaling pathway, phosphospecific JNK1 and JNK2, were upregulated in response to rhResistin. Conclusion: Resistin may participate in more than one mechanism to influence pro-inflammatory cytokine release from human adipocytes; potentially via the integration of NF-κB and JNK signaling pathways

    Increased resistin gene and protein expression in human abdominal adipose tissue

    No full text
    Resistin, a novel signalling molecule isolated in mice has been suggested to be the putative hormone thought to link obesity with type 2 diabetes. The aim of this study was to examine resistin protein expression in human adipose tissue depots and resistin secretion in isolated adipose cells, to characterize resistin expression in human adipose tissue. Both resistin mRNA and protein expression were analysed from human adipose tissue (n = 5 adipose tissue samples: abdominal subcutaneous (Sc) n = 19, abdominal omental adipose tissue (Om) n = 10, thigh n = 9, breast n = 7). Resistin protein expression levels were similar in both the abdominal Sc and Om adipose tissue depots, and expression in abdominal fat depots were increased compared with thigh (p < 0.001) and breast tissue depots (p < 0.001). These findings were consistent with the mRNA expression studies. Resistin was secreted from both pre-adipocytes and adipocytes cells. Thus, resistin resides within isolated adipose cells and is expressed and secreted in human adipose tissue. In conclusion, this study confirms the expression of resistin in human adipose tissue and increased expression in abdominal fat, this suggests a potential role in linking central obesity to type 2 diabetes and/or cardiovascular disease

    A critical role for ChREBP-mediated FGF21 secretion in hepatic fructose metabolism

    No full text
    Objective: Increased fructose consumption is a contributor to the burgeoning epidemic of non-alcoholic fatty liver disease (NAFLD). Recent evidence indicates that the metabolic hormone FGF21 is regulated by fructose consumption in humans and rodents and may play a functional role in this nutritional context. Here, we sought to define the mechanism by which fructose ingestion regulates FGF21 and determine whether FGF21 contributes to an adaptive metabolic response to fructose consumption. Methods: We tested the role of the transcription factor carbohydrate responsive-element binding protein (ChREBP) in fructose-mediated regulation of FGF21 using ChREBP knockout mice. Using FGF21 knockout mice, we investigated whether FGF21 has a metabolic function in the context of fructose consumption. Additionally, we tested whether a ChREBP-FGF21 interaction is likely conserved in human subjects. Results: Hepatic expression of ChREBP-β and Fgf21 acutely increased 2-fold and 3-fold, respectively, following fructose gavage, and this was accompanied by increased circulating FGF21. The acute increase in circulating FGF21 following fructose gavage was absent in ChREBP knockout mice. Induction of ChREBP-β and its glycolytic, fructolytic, and lipogenic gene targets were attenuated in FGF21 knockout mice fed high-fructose diets, and this was accompanied by a 50% reduction in de novo lipogenesis a, 30% reduction VLDL secretion, and a 25% reduction in liver fat compared to fructose-fed controls. In human subjects, serum FGF21 correlates with de novo lipogenic rates measured by stable isotopic tracers (R = 0.55, P = 0.04) consistent with conservation of a ChREBP-FGF21 interaction. After 8 weeks of high-fructose diet, livers from FGF21 knockout mice demonstrate atrophy and fibrosis accompanied by molecular markers of inflammation and stellate cell activation; whereas, this did not occur in controls. Conclusions: In summary, ChREBP and FGF21 constitute a signaling axis likely conserved in humans that mediates an essential adaptive response to fructose ingestion that may participate in the pathogenesis of NAFLD and liver fibrosis. Keywords: FGF21, ChREBP, Fructose, Lipogenesis, NAFL

    FGF21 and lipase levels in acute pancreatitis subjects and FGF21 levels in control subjects.

    No full text
    <p>Panel A shows mean serum FGF21 and lipase levels in acute pancreatitis subjects from the day of onset of symptoms, while panel B shows mean FGF21 levels in healthy control subjects drawn every two weeks over the course of four weeks. Data shown as the mean ± SEM.</p
    corecore