38 research outputs found

    Design and numerical analysis of an electrostatic energy harvester with impact for frequency up-conversion

    No full text
    Integration of vibration energy harvesters (VEHs) with small-scale electronic devices may form an attractive alternative for relatively large batteries and can, potentially, increase their lifespan. However, the inherent mismatch between a harvester’s high-frequency resonance, typically in the range 100 - 1000 Hz, relative to the available low-frequency ambient vibrations, typically in the range 10–100 Hz, means that low-frequency power generation in microscale VEHs remains a persistent challenge. In this work, we model a novel electret-based, electrostatic energy harvester (EEH) design. In this design, we combine an out-of-plane gap-closing comb (OPGC) configuration for the low-frequency oscillator with an in-plane overlap comb configuration for the high-frequency oscillator and employ impact for frequency up-conversion. An important design feature is the tunability of the resonance frequency through the electrostatic nonlinearity of the low-frequency oscillator. Impulsive normal forces due to impact are included in numerical simulation of the EEH through Moreau’s time-stepping scheme which has, to the best of our knowledge, not been used before in VEH design and analysis. The original scheme is extended with time-step adjustments around impact events to reduce computational time. Using frequency sweeps, we numerically investigate power generation under harmonic, ambient vibrations. Results show improved low-frequency power generation in this EEH compared to a reference EEH. The EEH design shows peak power generation improvement of up to a relative factor 3.2 at low frequencies due to the occurrence of superharmonic resonances

    Synchronization of identical linear systems and diffusive time-delayed couplings

    No full text
    We study the problem of controlled network synchronization for a class of identical linear systems. The systems are interconnected through static and dynamic diffusive couplings with time-delays. In particular, we derive conditions on the systems, on the couplings, on the time-delay, and on the network topology that guarantee global synchronization of the systems. Diffusive time-delayed dynamic couplings are constructed by combining linear observers and output feedback controllers. Using passivity properties, sufficient conditions for boundedness of the interconnected systems are derived. Moreover, predictor-based dynamic couplings are proposed in order to enhance robustness against time-delays in the network. The results are illustrated by numerical simulations.</p

    Modular model reduction of interconnected systems:A robust performance analysis perspective

    Get PDF
    Many complex engineering systems consist of multiple subsystems that are developed by different teams of engineers. To analyse, simulate and control such complex systems, accurate yet computationally efficient models are required. Modular model reduction, in which the subsystem models are reduced individually, is a practical and an efficient method to obtain accurate reduced-order models of such complex systems. However, when subsystems are reduced individually, without taking their interconnections into account, the effect on stability and accuracy of the resulting reduced-order interconnected system is difficult to predict. In this work, a mathematical relation between the accuracy of reduced-order linear-time invariant subsystem models and (stability and accuracy of) resulting reduced-order interconnected linear time-invariant model is introduced. This result can subsequently be used in two ways. Firstly, it can be used to translate accuracy characteristics of the reduced-order subsystem models directly to accuracy properties of the interconnected reduced-order model. Secondly, it can also be used to translate specifications on the interconnected system model accuracy to accuracy requirements on subsystem models that can be used for fit-for-purpose reduction of the subsystem models. These applications of the proposed analysis framework for modular model reduction are demonstrated on an illustrative structural dynamics example.</p
    corecore