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a b s t r a c t

Many complex engineering systems consist of multiple subsystems that are developed by different
teams of engineers. To analyse, simulate and control such complex systems, accurate yet compu-
tationally efficient models are required. Modular model reduction, in which the subsystem models
are reduced individually, is a practical and an efficient method to obtain accurate reduced-order
models of such complex systems. However, when subsystems are reduced individually, without taking
their interconnections into account, the effect on stability and accuracy of the resulting reduced-
order interconnected system is difficult to predict. In this work, a mathematical relation between
the accuracy of reduced-order linear-time invariant subsystem models and (stability and accuracy
of) resulting reduced-order interconnected linear time-invariant model is introduced. This result can
subsequently be used in two ways. Firstly, it can be used to translate accuracy characteristics of the
reduced-order subsystem models directly to accuracy properties of the interconnected reduced-order
model. Secondly, it can also be used to translate specifications on the interconnected system model
accuracy to accuracy requirements on subsystem models that can be used for fit-for-purpose reduction
of the subsystem models. These applications of the proposed analysis framework for modular model
reduction are demonstrated on an illustrative structural dynamics example.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Many complex engineering systems, such as those in the au-
omotive and high-tech industry, rely on the integration of mul-
iple interconnected subsystems/modules. These subsystems are
ncreasingly of a multiphysics and/or multidisciplinary nature
nd their dynamic behaviour is typically developed, modelled,
nd analysed independently, possibly by distinct teams. For the
nalysis and design of a single subsystem, detailed high-order
odels with a high level of complexity are typically used. The
ynamics of each subsystem may be modelled and analysed
ndividually in, e.g., the mechanical, electrical or thermal domain,
r combinations thereof and control engineers may use these
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subsystem models to guarantee required dynamic behaviour. In-
terconnecting such high-order subsystem models to analyse the
interconnected system would lead to models of such high com-
plexity that the dynamics analysis of the interconnected sys-
tem becomes infeasible. Therefore, simplified versions of these
subsystem models, i.e., reduced-order models (ROMs), are used
instead for analysis of the interconnected system model (Reis
& Stykel, 2008). In this paper, we will provide a framework
for analysing how the errors introduced by subsystem reduction
influence the accuracy of the model of the interconnected system.

The general process of simplifying models, called model order
reduction (MOR), is a topic that is studied in several research
fields such as structural dynamics (Craig, 2000), systems and
control (Gugercin & Antoulas, 2004), thermal systems (Veldman
et al., 2018), see Antoulas (2005), Besselink et al. (2013) and
Schilders, Van der Vorst, and Rommes (2008) for overviews.
Generally, in MOR, the aim is to find a ROM that is reduced
significantly in complexity while still providing an accurate de-
scription of the dynamic behaviour of the high-order model.
For linear systems, this accuracy requirement typically specifies
a frequency range of interest. For linear time-invariant (LTI)
systems, this is performed commonly using projection-based
methods (Antoulas, 2005). These methods rely on the projec-
tion of the high-order model onto a subspace with a reduced
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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umber of states. Examples of commonly used projection-based
ethods used for MOR are the proper orthogonal decompo-
ition method (Kerschen, Golinval, Vakakis, & Bergman, 2005),
educed basis methods (Boyaval et al., 2010), balancing meth-
ds (Glover, 1984; Gugercin & Antoulas, 2004; Moore, 1981) and
rylov methods (Grimme, 1997).
Applying these MOR methods on a subsystem level can lead to

ccurate subsystem models. However, it does not necessarily lead
o the best approximation of the behaviour of the interconnected
ystem. Therefore, several other approaches have been explored.
lthough direct reduction of the entire interconnected system as
whole often leads to accurate models, it completely destroys

he interconnection structure (Lutowska, 2012). As a solution
o this problem, structure-preserving methods are available for
nterconnected systems (Lutowska, 2012; Sandberg & Murray,
009; Schilders & Lutowska, 2014; Vandendorpe & van Dooren,
008). In the structural dynamics field, component mode synthe-
is (CMS) methods are also structure-preserving (de Klerk, Rixen,
Voormeeren, 2008). However, these methods do not provide a
riori error bounds. A complementary approach is model reduc-
ion of network systems (Besselink, Sandberg, & Johansson, 2015;
heng & Scherpen, 2021; Yeung, Goncalves, Sandberg, & Warnick,
009), where the aim is often to reduce the interconnection
tructure rather than the subsystem dynamics. Furthermore, for
etwork systems, the interconnected system typically consists
f a large number of subsystems of relatively small complexity.
herefore, these methods are not developed for the case of several
ighly complex interconnected LTI subsystems.
To perform accurate model reduction, knowledge on the en-

ire interconnected system model is needed. However, this is
ypically not feasible for large-scale models of interconnected
ystems. In such cases, modular model reduction is the preferred
pproach (Buhr & Smetana, 2018; Vaz & Davison, 1990), as it
rovides a significant computational advantage. Additionally, it
llows to decompose the overall complexity reduction problem
nto smaller ones tailored to the nature of the subsystems (Reis
Stykel, 2008). Therefore, a MOR method that is best suitable for

educing a specific subsystem can be chosen for each subsystem
ndividually (Benner, Gugercin, & Willcox, 2015). Furthermore,
odular model reduction has the advantage that it preserves the

nterconnection structure and the physical interpretation of the
ubsystems. Specifically, in the reduced-order model of the inter-
onnected system, (1) the topology of the system that describes
ow the subsystems interact, i.e., the interconnection structure,
s preserved and, (2) each subsystem model still represents the
hysical behaviour of that subsystem.
Unfortunately, when a system model is reduced modularly,

.e., individually on a subsystem level, it is challenging to quantify
ow the stability and accuracy of the reduced-order intercon-
ected system model are affected by a loss of accuracy induced
y the reduction of a subsystem model. Although there are some
priori error bounds available in the literature (Ishizaki, Kashima,
mura, & Aihara, 2013; Reis & Stykel, 2008), these are often
ighly conservative and therefore less suitable for competitive
ngineering applications. In addition, if there are requirements on
ccuracy of the interconnected system it is difficult to translate
hese requirements to subsystem level. Currently, to the best of
he authors’ knowledge, there is no method that allows to specify
ccuracy requirements for subsystem models from a global per-
pective that guarantee a given accuracy for the required overall
nterconnected system a priori (i.e., before performing the actual
eduction).

This paper has the following contributions. The main contribu-
ion is a framework for quantitatively relating the input-to-output
ubsystem model accuracy to input-to-output accuracy of the

nterconnected system model. This framework is obtained by

2

using a robust performance analysis approach in which model
reduction errors are modelled as uncertainties. It allows for a
direct implementation of efficient mathematical tools from the
theory of robust control (Skogestad & Postlethwaite, 2005; Zhou
& Doyle, 1998) such as the structured singular value (Packard
& Doyle, 1993). These tools can be used to relate subsystem
reduction errors to the reduction error of the interconnected
system, thus allowing for analysing and optimizing the accuracy
of subsystem reduction. As specific uses of this framework, two
additional contributions follow.

First, the modular model reduction is analysed using a bottom-
up approach. This approach allows to determine the propa-
gation of errors introduced by subsystem model reduction to
the reduced-order interconnected system model. Using this ap-
proach, a priori stability guarantees and error bounds on the
interconnected system model can be computed using only (a
priori) knowledge on reduction errors on a subsystem level. We
compare the global a priori error bound to that in Reis and Stykel
(2007) and show that it is significantly less conservative for the
given example system. In our earlier work (Janssen, Besselink,
Fey, Hossein Abbasi, & van de Wouw, 2022), we presented an
iterative version this approach using bisection to find a priori
error bounds. In this work, these error bounds can be efficiently
computed either on a frequency-dependent or global (frequency-
independent) level by solving simple linear matrix inequalities
(LMIs). Additionally, we show how the error bound can be com-
puted using the actual error of the subsystems, and can therefore
also be applied to MOR methods for which a priori error bounds
are not available, such as Krylov or CMS methods.

Second, a top-down approach is given. In this approach, ac-
curacy specifications on a subsystem level are determined based
on requirements on the interconnected system model accuracy.
Typically, we are interested in obtaining a (reduced) model of
the interconnected system that meets some specific accuracy
requirements. With this approach, by solving simple LMIs, we
can translate these accuracy requirements to the subsystem level.
Therefore, model reduction can be applied on a subsystem level.
In particular, this allows for the use of different MOR methods
for different subsystems, as long as error bound requirements are
met.

The paper is organized as follows. Section 2 gives the problem
statement including the modelling framework. In Section 3, a
robust performance perspective on modular model reduction is
developed, i.e., it is explained how to relate subsystem model
reduction errors to the reduced-order interconnected system
model error and vice versa. Specific applications of these rela-
tions, i.e., the bottom-up and top-down approaches, are given in
Section 4 which are demonstrated on an illustrative structural
dynamics example system in Section 5. The conclusions and
recommendations for future work are given in Section 6.
Notation. The set of real numbers is denoted by R. The set of
complex numbers is denoted by C. Given a vector x ∈ Cn, its
Euclidean norm is given as ∥x∥. Given a transfer function (matrix)
G(s), where s is the Laplace variable, ∥G∥∞ denotes its H∞-norm.
The real rational subspace of H∞ is denoted by RH∞, which
consists of all proper and real rational stable transfer matrices.
Given a complex matrix A, AH denotes its conjugate transpose,
σ̄ (A) denotes its largest singular value, ρ(A) denotes its spectral
radius and A = diag(A1, A2) denotes a block-diagonal matrix with
submatrices A1 and A2. The identity matrix of size n is denoted by
In.

2. Problem statement

In this work, we consider a set of arbitrarily interconnected
LTI subsystems. These subsystems interact by linking for each
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Fig. 1. Block diagram representation an arbitrarily interconnected system
onsisting of several subsystems.

ubsystem, (a part of) subsystem outputs, to (a part of) inputs of
he other subsystems. Additionally, some subsystems will have
ne or multiple external input(s) and/or output(s). An example
f such a system is given in Fig. 1. This class of systems con-
ains a wide variety of interconnected systems for which model
eduction is essential to enable design, analysis and control of the
ystem dynamics.

.1. Modular model framework

Consider k high-order subsystems j ∈ {1, . . . , k} with (proper
eal rational) transfer functions Gj(s), inputs uj and outputs yj
f dimensions mj and pj, respectively, and McMillan degree nj.
e collect the subsystem transfer functions in the block-diagonal

ransfer function

b(s) := diag(G1(s), . . . ,Gk(s)), (2.1)

or which the total number of inputs and outputs are then given
y mb :=

∑k
j=1 mj and pb :=

∑k
j=1 pj, respectively. We define

nputs u⊤

b :=
[
u⊤

1 , . . . , u⊤

k

]
and outputs y⊤

b :=
[
y⊤

1 , . . . , y⊤

k

]
.

The subsystems are interconnected according to[
ub
yc

]
= K

[
yb
uc

]
, K =

[
K11 K12
K21 K22

]
(2.2)

here uc and yc denote external inputs and outputs, respectively,
ee Fig. 2(a). The number of external inputs and outputs are given
y mc and pc , respectively. Then, the transfer function from uc to
c is given by the upper linear fractional transformation (LFT) of
b(s) and K , which yields

c(s) := K21Gb(s)(I − K11Gb(s))−1K12 + K22. (2.3)

hroughout this paper, we make the following assumption.

ssumption 2.1. The system (2.3) is

(1) well-posed, i.e., I − K11Gb(s) has a proper real rational
inverse;

(2) is internally stable, i.e., (I−K11Gb(s))−1
∈ RH∞ and Gc(s) ∈

RH∞.

Note that a feedback system is defined to be well-posed if all
losed-loop transfer functions are well-defined and proper, and
nternally stable if all closed-loop transfer functions are stable.
ecause K is a static interconnection matrix, the specified transfer

functions in Assumption 2.1 are necessary and sufficient for their
respective properties on Gc(s). For a potential extension to a dy-
namic interconnection structure K (s), additional assumptions are
required that guarantee the well-posedness and internal stability
of (2.3). For more details on well-posedness and internal stability,
see Zhou and Doyle (1998, Definitions 5.1 and 5.2). Note that for
many systems within this modelling framework, external inputs
and outputs are directly connected to a subsystem input and
output, respectively. In those instances, uc will contain identical

elements in ub. The same holds for output signals yc and yb.

3

Fig. 2. Block diagram representation of (a) high-order interconnected system
Gc (s) and (b) reduced-order interconnected system Ĝc (s). K represents a static
interconnection block.

2.2. Modular model order reduction

In model order reduction, we aim to find a ROM of a system
with (significantly) fewer internal states than the number of
states of the high-order model. In this paper, we compute the
ROM of the system modularly, i.e., we reduce each subsystem
independently. Therefore, we need to consider reduced-order
subsystems j ∈ {1, . . . , k} and their (real rational proper) transfer
functions Ĝj(s), each with inputs ûj and outputs ŷj with dimen-
sions mj and pj, respectively, and McMillan degree rj. Let the
educed-order block-diagonal transfer function be given as
ˆ b(s) := diag(Ĝ1(s), . . . , Ĝk(s)). (2.4)

hen, we define inputs û⊤

b :=
[
û⊤

1 , . . . , û⊤

k

]
and outputs ŷ⊤

b :=[
ŷ⊤

1 , . . . , ŷ⊤

k

]
with dimensions mb and pb, respectively. Since we

nly reduce the subsystem models, the interconnection structure
emains preserved. Therefore, the reduced-order interconnected
ystem transfer function is, similar to (2.3), given by
ˆ c(s) := K21Ĝb(s)(I − K11Ĝb(s))−1K12 + K22. (2.5)

ere, the reduced-order interconnected system has external in-
uts uc and external outputs ŷc . The reduced-order intercon-
ected system is illustrated in Fig. 2(b). Note that we do not
ake any assumptions on well-posedness and stability of (2.5).

n fact, we would like to find conditions on the model reduction
rocedure that guarantees these properties given the high-order
odel Gc(s) satisfying Assumption 2.1.
In this paper, the aim is to compute a ROM that can accurately

escribe the external input-to-output behaviour of the intercon-
ected system. In the described modelling framework, this means
hat given the same external input uc , the difference between
he external output signal of the high-order and the reduced-
rder system ec := ŷc − yc , is required to be small. Therefore,
he accuracy of the reduced-order interconnected system can be
escribed by the interconnected system error dynamics, which is
efined as

c(s) := Ĝc(s) − Gc(s). (2.6)

iven (2.3), (2.5) and (2.6), Ec can be written as

c(s) = K21Ĝb(s)(I − K11Ĝb(s))−1K12

− K21Gb(s)(I − K11Gb(s))−1K12.
(2.7)

owever, with a modular approach, subsystems are reduced in-
ependently, which therefore means that knowledge on the ac-
uracy of the reduced models is generally only available on a
ubsystem level. The accuracy of the reduced-order subsystems
an be described by the subsystem error dynamics, which is
efined as

j(s) := Ĝj(s) − Gj(s). (2.8)

he associated output error is denoted as ej = ŷj −yj. We assume
hat the reduction is such that E (s) ∈ RH .
j ∞
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emark 2.2. For some model reduction methods, bounds on
he error dynamics are available a priori. For example, model re-
uction using traditional balanced truncation (Enns, 1984; Moore,
981) can be applied to systems satisfying Gj(s) ∈ RH∞. It guar-

antees preservation of stability, i.e., Ĝj(s) ∈ RH∞, and therefore
Ej(s) ∈ RH∞. The a priori error bound on the reduced-order
subsystem j is then given by

∥Ej∥∞ ≤

nj∑
i=r+1

σj,i. (2.9)

ere, σj,i, i = 1, . . . , nj are the Hankel singular values (Glover,
1984).

Computation of the reduction error of the interconnected sys-
tem Ec on the basis of knowledge of Ej can be computationally ex-
ensive or even infeasible for complex interconnected high-order
odels. Moreover, this computation is only possible when the
xact subsystem reduction errors Ej are known for all subsystems.
In addition, usually, requirements are posed to model accuracy

nd model complexity on the level of the interconnected system.
ith modular model reduction however, the subsystem models

re reduced on subsystem level. Therefore, the need arises for
establishing a relation between subsystem error dynamics Ej and
he interconnected system error dynamics Ec without exact a
riori knowledge of the specific error dynamics Ej for all sub-
ystems. In the next section, we will show how this relation can
e formulated using a robust performance analysis perspective.
pecifically, we will show how this relation gives the ability to
ursue

(1) a bottom-up approach: evaluate the propagation of sub-
system reduction errors Ej to the resulting stability and
accuracy of the reduced interconnected system Ec , and

(2) a top-down approach: determine requirements on the sub-
system reduction error dynamics Ej to meet requirements
on stability and specified maximal error Ec of the reduced
interconnected system.

. A robust performance perspective onmodular model reduc-
ion

In this section, we show how reformulation of the modular
odel reduction framework into a robust performance analysis
roblem setting can lead to a directly computable relation be-
ween Ej and Ec . To this end, we recall that Ej(s) ∈ RH∞. As a
result, we can define weighting transfer functions Vj(s) ∈ RH∞

and Wj(s) ∈ RH∞ such that Ej(s) can be written as

Ej(s) = Wj(s)∆j(s)Vj(s), (3.1)

for some ∆j(s) ∈ RH∞ satisfying ∥∆j∥∞ ≤ 1. Such formula-
tion is standard in robust control theory, see e.g. Skogestad and
Postlethwaite (2005, Section 8.2.3). Then, (2.8) can be rewritten
as

Ĝj(s) = Gj(s) + Wj(s)∆j(s)Vj(s). (3.2)

This representation is shown in Fig. 3. Similar to before, we collect
the matrices ∆j and the weighting matrices as

∆b(s) := diag (∆1(s), . . . , ∆k(s)) ,

Vb(s) := diag (V1(s), . . . , Vk(s)) , and
Wb(s) := diag (W1(s), . . . ,Wk(s)) .

such that we have Eb(s) = Ĝb(s) − Gb(s) = Wb(s)∆b(s)Vb(s).
By replacing Ĝb(s) by Gb(s) + Wb(s)∆b(s)Vb(s) in Fig. 2(b) and

comparing it with the high-order system Gb(s) in Fig. 2(a), we
obtain the block diagram in Fig. 4. This allows us to rewrite the
 W

4

Fig. 3. Block diagram representation of Ĝj(s) = Gj(s) + Ej(s) where Ej(s) is given
s a function of Vj(s), Wj(s) and ∆j(s).

nterconnected system error dynamics Ec(s) as in (2.7) as an upper
FT of block-diagonal weighting transfer functions Wb(s), Vb(s),
he block-diagonal transfer function ∆b(s), and the nominal trans-
er function N(s) given by

(s) =

[
N11(s) N12(s)
N21(s) O

]
, (3.3)

here

11(s) = K11(I − Gb(s)K11)−1,

12(s) = (I − K11Gb(s))−1K12,

21(s) = K21(I − Gb(s)K11)−1.

(3.4)

ote that we have N(s) ∈ RH∞ as a result of Assumption 2.1.
ig. 4 shows the inputs and outputs of the nominal system N(s).
he transfer function of the interconnected system error dynam-
cs Ec is then given by

c(s) = N21Wb∆bVb(I − N11Wb∆bVb)−1N12. (3.5)

s is standard within robust control theory (Zhou & Doyle, 1998),
ith (3.5), in Ec(s), we have now ‘‘pulled out’’ the errors intro-
uced by the reduction of subsystems Gj(s) from the nominal
ystem N(s) and shifted them into Vb(s), Wb(s) and ∆b(s). The re-
aining system N(s) consists only of high-order models Gb(s) and

heir interconnection structure K , see (3.3), and is thus known
efore reduction is applied to any of the subsystems.
In robust control theory (Packard & Doyle, 1993; Skogestad &

ostlethwaite, 2005; Zhou & Doyle, 1998), by definition, a system
atisfies a robust performance criterion if for all perturbed plants
ithin the set of uncertain system models it satisfies the given
erformance specifications. In doing so, it gives a worst-case
elation between local uncertainties in the system to the global
erformance of this system. In this paper, by reformulation of the
roblem, robust performance analysis methods can be exploited
o study the relation between Ej(s) and Ec(s).

Up to now, we have extracted the errors introduced by reduc-
ion of the subsystems through the terms ∆b(s), Wb(s) and Vb(s).
s we aim to relate these subsystem reduction errors to the global
eduction error Ec(s), it will turn out to be useful to introduce a
eedback between ec and uc in Fig. 4, leading to Fig. 5, as is typical
n robust performance analysis (Zhou & Doyle, 1998, Figure 10.5).
n this setup, the relation between local and global reduction
rrors can be regarded as a robust performance problem. To make
his explicit, define ∆c(s) and weighting transfer functions Vc(s)
nd Wc(s) which represent a performance specification on the
nterconnected system error dynamics Ec(s). By closing this loop
s in Fig. 5, the robust performance problem becomes equivalent
o a robust stability problem with augmented functions ∆c(s),
c(s) andWc(s) (Zhou & Doyle, 1998, Theorem 10.8). Furthermore,
e define transfer functions

∆(s) := diag (∆b(s), ∆c(s)) ,

V (s) := diag (Vb(s), Vc(s)) , and (3.6)

(s) := diag (Wb(s),Wc(s)) ,
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Fig. 4. Block diagram representation of the error dynamics of the interconnected
system, Ec (s) = Ĝc (s)−Gc (s), as a function of Vb(s), Wb(s), ∆(s) and the nominal
system N(s).

Fig. 5. Block diagram representation of the error dynamics of the interconnected
system, Ec (s) = Ĝc (s) − Gc (s), including the nominal system N(s), augmented
uncertainty ∆c (s) and weighting transfer functions Vc (s), Wc (s) for robust
performance analysis.

and let V , V−1, W ,W−1
∈ RH∞. Note that the stability property

of these transfer functions can always be ensured by appropri-
ate selection of these (weighting) functions V (s) and W (s). In
ection 4, we show that, for specific weighting functions, this al-
ows for the establishment of bottom-up and top-down relations
etween the errors Ec and Ej.
If the error dynamics Eb(s) ∈ RH∞ and Ec(s) ∈ RH∞ are

known exactly, by definition, a solution to ∆b(s), Vb(s) and Wb(s)
can be found. However, to have the ability to solve both the
bottom-up and top-down problems, as described at the end of
Section 2, we will at this point no longer assume that Eb(s) and
c(s) are known (a priori). Instead of working with given exact
rror dynamics Eb(s) and Ec(s), we consider a larger (uncertainty)
et of error dynamics that contains Eb(s) and Ec(s). To define this,
consider the set ∆ as the set of complex matrices structured
accordingly as

∆ :=

{
diag

(
∆1, . . . , ∆k, ∆c

) ⏐⏐⏐ (3.7)

∆j ∈ Cpj×mj , j ∈ {1, . . . , k}, ∆c ∈ Cmc×pc
}
.

Given ∆, the MOR problem is reformulated as a robust perfor-
mance problem where the error dynamics Eb(s) and the per-
formance specification on Ec(s) are represented as an uncertain
system bounded by ∆ and the weighting functions W (s) and V (s).
5

Therefore, computational tools from the field of robust control,
specifically, the structured singular value µ, can be used.

Definition 3.1 (Packard and Doyle (1993, Definition 3.1)). Given
matrix M ∈ C(mb+pc )×(pb+mc ), the structured singular value is

µ∆(M) :=
1

min {σ̄ (∆) | det(I − M∆) = 0, ∆ ∈ ∆}
. (3.8)

Here, µ∆(M) is the smallest ∆ ∈ ∆, in terms of σ̄ (∆), that
makes the matrix I − M∆ singular. Using ideas from robust
performance analysis, we pose the following theorem.

Theorem 3.2. Consider the system (2.3) satisfying Assumption 2.1,
weighting functions (3.6), and the error dynamics (3.5) in Fig. 4. The
following statements are equivalent:

(1) For any Ej(s) ∈ RH∞ satisfying

∥W−1
j EjV−1

j ∥∞ ≤ 1, (3.9)

j ∈ {1, . . . , k}, we have that the error dynamics (3.5) are
well-posed, internally stable, and satisfy

∥VcEcWc∥∞ < 1. (3.10)

(2) With ∆ as in (3.7),

sup
ω∈R

µ∆

(
V (iω)N(iω)W (iω)

)
< 1. (3.11)

Proof. With the following remarks, we show that the theorem
becomes equivalent to the robust performance criterion, as given
in Skogestad and Postlethwaite (2005, Theorem 8.7) and Zhou and
Doyle (1998, Theorem 10.8).

(1) We have that N ∈ RH∞ as a result of Assumption 2.1 and
weighting functions (3.6) we have VNW ∈ RH∞.

(2) Let

∆b :=

{
diag

(
∆1, . . . , ∆k

) ⏐⏐⏐
∆j ∈ Cpj×mj , j ∈ {1, . . . , k}

}
. (3.12)

Then, due to the block-diagonal structure of Eb and the
weighting filters Vb and Wb, we have,

W−1
b EbV−1

b (iω) ∈{
∆b ∈ RH∞

⏐⏐⏐∆b(s) ∈ ∆b ∀ s ∈ C
}
. (3.13)

(3) The system VcEcWc is the upper LFT of weighted nominal
system VNW and uncertainty ∆b as in (3.13).

(4) With ∆ as in (3.7), we have the augmented block structure
to test the robust performance of the system in Fig. 4. Note
that Fig. 5 is equivalent to Zhou and Doyle (1998, Figure
10.5). □

Theorem 3.2 is a reformulation of the robust performance
criterion using µ-analysis. Using this reformulation, it provides
a worst-case relation between the H∞-norm of Ej for all j ∈

{1, . . . , k} and Ec . Note that to verify the satisfaction of (3.11),
computationally efficient algorithms have been developed to
compute the peak structured singular value, using the algorithms
developed for H∞-norm computation (Boyd, Balakrishnan, &
Kabamba, 1989; Bruinsma & Steinbuch, 1990). See Zhou and
Doyle (1998, Section 10.3) for more information.

With weighting transfer functions V and W , it can be com-
puted how certain error dynamics (as described in Vj and Wj) in
subsystems Ej affect the interconnected system error dynamics
E in the worst case. Additionally, Theorem 3.2 implies that the
c
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educed-order interconnected system Ĝc is stable if the high-
rder interconnected system Gc is stable and (3.11) is satisfied,
s is shown in the following corollary.

orollary 3.3. Let the conditions in Theorem 3.2 hold. Then, if
3.11) is satisfied, the reduced-order interconnected system satisfies
ˆ c ∈ RH∞.

roof. We have that under the conditions in Theorem 3.2,

(1) Gc ∈ RH∞, and
(2) Ec ∈ RH∞ if (3.11) is satisfied.

herefore, we have that the parallel connection Ĝc = Gc + Ec ∈

RH∞. □

Furthermore, rephrasing Theorem 3.2 such that it provides
similar bounds on a frequency-dependent level can now be for-
malized in the following theorem.

Theorem 3.4. Consider the system (2.3) satisfying Assumption 2.1,
weighting functions (3.6), and the error dynamics (3.5) in Fig. 4. Let
ω ∈ R. Then, the following statements are equivalent:

(1) For any Ej(iω) satisfying

σ̄
(
W−1

j (iω)Ej(iω)V−1
j (iω)

)
≤ 1, (3.14)

j ∈ {1, . . . , k}, we have that the error dynamics (3.5) satisfy

σ̄
(
Vc(iω)Ec(iω)Wc(iω)

)
< 1 (3.15)

(2) With ∆ as in (3.7),

µ∆

(
V (iω)N(iω)W (iω)

)
< 1. (3.16)

Proof. This follows similarly to the proof of Theorem 3.2. How-
ever, here, Zhou and Doyle (1998, Theorem 10.8) is applied for
each frequency individually, such as for example in Zhou and
Doyle (1998, Example 10.4). □

Note that for Theorem 3.4, we lose the guarantees on well-
posedness and internal stability as µ∆ is only computed for
each frequency individually. To guarantee well-posedness and
internal stability of the system, satisfying (3.11) of Theorem 3.2
is sufficient.

Both Theorems 3.2 and 3.4 characterize a flexible relation
between Ej and Ec . However, computing µ∆ has been estab-
lished to be an NP-hard problem (Young, Newlin, & Doyle, 1991).
Fortunately, computing an upper bound on µ∆ is possible and
sufficient to satisfy the condition on µ∆ in Theorems 3.2 and
3.4 (Skogestad & Postlethwaite, 2005). To this end, consider the
set of scaling matrices given as

D :=

{
(Dℓ,Dr )

⏐⏐⏐Dℓ = diag
(
d1Ip1 , . . . , dkIpk , dc Imc

)
,

Dr = diag
(
d1Im1 , . . . , dkImk , dc Ipc

)
,

d1, . . . , dk, dc ∈ R>0

}
. (3.17)

ere, we recall that mj and pj are the number of inputs and out-
uts of subsystem j, respectively. We now formulate the following
heorem, which is a minor extension of Packard and Doyle (1993,
heorem 3.9).

heorem 3.5. Let M ∈ C(mb+pc )×(pb+mc ). If there exists a (Dℓ,Dr ) ∈

D such that

MDrMH
≺ Dℓ, (3.18)

then, given ∆ as in (3.7), µ (M) < 1.
∆

6

Proof. For any (Dℓ,Dr ) ∈ D, we have, as given in Zhou and Doyle
(1998, Section 10.2.2), the upper bound

µ∆(M) ≤ σ̄ (D
−

1
2

ℓ MD
1
2
r ). (3.19)

Therefore, to verify µ∆(M) < 1 it is sufficient to find some

(Dℓ,Dr ) ∈ D for which σ̄ (D
−

1
2

ℓ MD
1
2
r ) < 1. Note that this is

quivalent to (D
−

1
2

ℓ MD
1
2
r )(D

−
1
2

ℓ MD
1
2
r )H ≺ I and therefore to the

matrix inequality

D
−

1
2

ℓ MDrMHD
−

1
2

ℓ ≺ I. (3.20)

Finally, we can left- and right-multiply both sides of (3.20) with

D
1
2
ℓ to find (3.18) in the statement of the theorem. □

Note that V (iω)N(iω)W (iω) ∈ C(mb+pc )×(pb+mc ) and let ω ∈ R. It
follows directly from Theorem 3.5 that if there exists a (Dℓ,Dr ) ∈

D for which

V (iω)N(iω)W (iω)DrWH (iω)NH (iω)VH (iω) ≺ Dℓ, (3.21)

e have µ∆(V (iω)N(iω)W (iω)) < 1. For any fixed V , W and N ,
erifying (3.21) can be done using standard LMI solvers. Solving
n LMI can be a computationally expensive task. However, the
imensions of the LMI in (3.21) are (mb + pc) × (pb + mc),

i.e., based on the number of internal and external inputs in the
system. Therefore, the computational cost of solving (3.21) scales
with the size of the interconnection structure, and, crucially, not
with the number of states in the system. For systems with very
complex interconnections, methods that reduce the complexity of
the interconnection, such as interface reduction (Krattiger et al.,
2019), may be considered.

Remark 3.6. Note that condition (3.11) in Theorem 3.2 requires
taking a supremum over ω. Several approaches are available to
avoid the computational cost of computing µ∆ (V (iω)N(iω)W (iω))
or its upper bound for all ω ∈ R. Some of these methods are
discussed in detail in Packard and Doyle (1993, Section 10).

Bringing specific structure to V and W , the matrix inequality
in (3.21) can be solved such that relations between Ej for all
j ∈ {1, . . . , k} and Ec can be directly computed. These relations
rovide for instance an error bound on the reduced-order inter-
onnected system model given error bounds of the reduced-order
ubsystem models (bottom-up approach), and may be used to im-
rove the reduced-order interconnected system model accuracy
y reducing subsystem models to satisfy accuracy requirements
n the reduced-order interconnected system model (top-down
pproach). In the next section, guidelines are given on how V and
can be designed specifically for these purposes in the scope of
odular model reduction.

. Error analysis for modular model reduction

With the relations given in Theorems 3.2 and 3.4, the weight-
ng transfer functions V and W can be used to compute how
ubsystem error dynamics Ej and the interconnected system error
ynamics Ec are related to each other, by checking if (3.11)
nd (3.16) hold for Theorems 3.2 and 3.4, respectively. In this
ection, we show several approaches to analyse how subsystem
rror bounds relate to the interconnected system error bounds.
hese approaches rely on obtaining these relations by imposing
specific structure on the weighting transfer functions V and W .

t is shown how relations between bounds on Ej and Ec can be
ound on a global and frequency-dependent level. These relations
ill be used for the bottom-up and the top-down approaches, as

ndicated at the end of Section 2.
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.1. Bottom-up approach: Error bounds on Ec given error bounds on
j

In this section, we show how to find global and frequency-
ependent a priori bounds on the interconnected error dynamics
c given bounds on the error dynamics Ej for all j ∈ {1, . . . , k} in-
roduced by reduction of subsystems, and based on Theorems 3.2,
.4 and 3.5. In the bottom-up approach, we adopt the assumption
hat for each subsystem j ∈ {1, . . . , k} we have either an a pri-
ri global (frequency-independent) error bound or a frequency-
ependent error bound. We then aim to find in the former case a
lobal error bound and in the latter case a frequency-dependent
rror bound on the interconnected system by proper choices of
eighting functions.
The following theorem can be used to compute a global bound

¯c on the interconnected system reduction error, i.e., we have that
Ec∥∞ ≤ ε̄c given ∥Ej∥∞ ≤ ε̄j for all j ∈ {1, . . . , k}.

heorem 4.1. Let Ej ∈ RH∞ and let ε̄j be such that ∥Ej∥∞ ≤ ε̄j
or all j ∈ {1, . . . , k}. Consider the optimization problem

given ε̄j ∀ j ∈ {1, . . . , k}
minimize
Dℓ,Dr ,WG

ε̄c

ubject to N(iω)WGDrWGNH (iω) ≺ Dℓ ∀ ω,

(Dℓ,Dr ) ∈ D (4.1)

ith WG
:= diag(ε̄1Im1 , . . . , ε̄kImk , ε̄

−1
c Ipc ) and D as in (3.17). If ε̄⋆

c
s a feasible solution to (4.1), then

(1) Ec is well-posed,
(2) Ec is internally stable, and
(3) ∥Ec∥∞ < ε̄⋆

c .

roof. The proof follows from Theorems 3.2 and 3.5. By substi-
ution of V = Ipb+mc and W = WG for the weighting transfer
unctions in Theorem 3.2, we have that the feedback system as
hown in Fig. 5 is well-posed, internally stable, and

Ec∥∞ < ε̄c for all
∥Ej∥∞ ≤ ε̄j, ∀ j ∈ {1, . . . , k},

(4.2)

f and only if supω∈R µ∆(N(iω)WG) < 1. Following from Theo-
em 3.5, this holds if, for all ω ∈ R, there exists a (Dℓ,Dr ) ∈ D
uch that N(iω)WGDrWGNH (iω) ≺ Dℓ, which is guaranteed by the
onstraint in (4.1). □

Theorem 4.1 provides a method to guarantee the stability of
he reduced-order interconnected system and compute a global
pper bound to the H∞-norm of the error dynamics of the in-
erconnected system ∥Ec∥∞ ≤ ε̄⋆

c introduced by reduction errors
globally) bounded by ∥Ej∥∞ ≤ ε̄j for all j ∈ {1, . . . , k}.

emark 4.2. If we multiply the scaling matrices (Dℓ,Dr ) ∈ D by
ny scalar α > 0, the resulting scaled largest singular value for
ny matrix M is given by

¯

(
1

√
α
D

−
1
2

ℓ M
√

αD
1
2
r

)
= σ̄

(
D

−
1
2

ℓ MD
1
2
r

)
. (4.3)

herefore, if we set any single dj or dc in (3.17) to a fixed value
reater than zero, which can be achieved by choosing an appro-
riate value for α, the upper bound to the structured-singular
alue remains unchanged.

To solve (4.1), we select dc = 1 as this does not change the
pper bound on µ∆ (see Remark 4.2). In this case, we have

GDrWG
= diag(d1ε̄2

1 Im1 , . . . , dkε̄
2
k Im2 ,

1
2 Ipc ). (4.4)
ε̄c
b

7

As the decision variable of the optimization problem (4.1) appears
linearly in (4.4) after setting γ := ε̄−2

c , the constraint in (4.1) is a
linear matrix inequality, i.e., the decision variables d1, . . . , dk and
γ appear linearly in (4.1). The solution to problem (4.1) can then
be computed directly using standard semidefinite programming
(SDP) solvers by maximizing over γ . Note that if no feasible
solution can be found, neither well-posedness, stability, nor an
error bound can be guaranteed.

For a frequency-dependent relation between Ej and Ec , we
introduce the following theorem that can be applied to any (dis-
crete set of frequencies) ω ∈ R.

Theorem 4.3. Let ω in R. Let εj(ω) be such that σ̄ (Ej(iω)) ≤ εj(ω)
or all j ∈ {1, . . . , k}. Consider the optimization problem

given εj(ω) ∀ j ∈ {1, . . . , k}
minimize
Dℓ,Dr ,W F (ω)

εc(ω)

subject to N(iω)W F (ω)DrW F (ω)NH (iω) ≺ Dℓ,

(Dℓ,Dr ) ∈ D (4.5)

ith W F (ω) := diag(ε1(ω)Im1 , . . . , εk(ω)Imk , ε
−1
c (ω)Ipc ) and D as in

3.17). If ε⋆
c (ω) is a feasible solution to (4.5), then σ̄ (Ec(iω)) < εc(ω).

roof. The proof follows from Theorems 3.4 and 3.5. By substi-
ution of V = Ipb+mc and W (iω) = W F (ω) in Theorem 3.4, we
btain

¯ (Ec(iω)) < εc(ω) for all
σ̄

(
Ej(iω)

)
≤ εj(ω) ∀ j ∈ {1, . . . , k},

(4.6)

f and only if µ∆

(
N(iω)W F (ω)

)
< 1. Following from Theo-

em 3.5, this holds if there exists a (Dℓ,Dr ) ∈ D such that
(iω)W F (ω)DrW F (ω)NH (iω) ≺ Dℓ. This matrix inequality is guar-
nteed by the constraint in (4.5). □

Theorem 4.3 provides an upper bound to the largest singu-
ar value of the error dynamics of the interconnected system
¯ (Ec(iω)) ≤ ε⋆

c (ω) introduced by reduction errors bounded by
¯ (Ej(iω)) ≤ εj(ω) for all j ∈ {1, . . . , k} at frequency ω. Similar
o the global case, we can solve the problem (4.5) after several
teps explained next. First, by setting dc = 1, we can replace
F (ω)DrW F (ω) by

iag
(
d1ε2

1(ω)Im1 , . . . , dkε
2
k (ω)Im2 ,

1
ε2
c (ω)

Ipc

)
. (4.7)

hen, after defining γ := ε−2
c (ω), the inequalities in (4.5) are

inear in the decision variables d1, . . . , dk and γ and the solution
to problem (4.5) can be found using standard SDP solvers for any
ω ∈ R. Note, also for this case, it holds that if no feasible solution
can be found for some ω ∈ R, no conclusion on the existence of
an upper bound on σ̄ (Ec(iω)) for that frequency can be made.

Remark 4.4. For the reduction of subsystems, model reduction
methods such as balanced truncation can only provide global
error bounds ε̄j as shown by (2.9) in Remark 2.2. In this case,
let εj(ω) = ε̄j for all j ∈ {1, . . . , k} for all ω ∈ R using
he given a priori error bounds on the subsystems ε̄j. How-
ver, µ-analysis is inherently frequency-dependent. Therefore, a
requency-dependent error bound on the interconnected system
rror dynamics εc(ω) can still be found by using Theorem 4.3.
ote that, as we will show in Section 5, the conservativeness
f εc(ω) is subject to the conservativeness the subsystem error

ound ε̄j provided.
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.2. Top-down approach: Ej specification based on Ec requirements

In this section, we show how Theorems 3.2 and 3.4 can be em-
ployed such that global and frequency-dependent reduction error
specifications on Ej on a subsystem level can be directly computed
from a reduction error Ec requirement on the interconnected
ystem model. This approach allows for specifically tailored sub-
ystem reduction that guarantees the required accuracy on the
nterconnected system model.

emark 4.5. In the top-down approach, we assume that we
ave some reduction error bound requirement on the intercon-
ected system, either a global bound ε̄c or a frequency-dependent
ound εc(ω). This bound can be defined from requirements on
he accuracy of the interconnected system model. The goal in the
eneral top-down approach is to find some set of either global

¯j or frequency-dependent εj(ω) reduction error bounds for all
ubsystems j ∈ {1, . . . , k} for which it can be guaranteed that
reduction the error bound on the interconnected system will not
be exceeded. In practice, there is an infinite number of possible
combinations of ε̄j (or εj(ω)) that satisfy this requirement. Given
the fact that there are many subsystem reduction options to
achieve the required subsystem accuracy, finding some, in some
sense, to be defined, (sub-)optimal distributions of ε̄j and εj(ω)
or now requires a heuristic approach. The development of a
ystematic approach to tackle this is still an open problem.

Within the scope of this paper, we assume that a global error
pecification ε̄c on the reduction error dynamics of the intercon-
ected system model is given. We then focus on restricting how
q, the error of a single subsystem j = q contributes to the error

of the interconnected system Ec . This approach can be used for
all subsystems individually, and therefore can be used to reduce
all subsystems, but does not solve the problem of finding an
optimal distribution between subsystem errors (see Remark 4.5).
However, it is still a relevant problem, since it allows for the
specification of reduction error bounds on a subsystem level,
based on specifications on the desired accuracy of the overall
interconnected system model.

Let reduction error bounds be given for all other reduced-
order subsystems, i.e., ∥Ej∥∞ ≤ ε̄j, j ̸= q. Then, we aim to find
the maximum to a global error bound ε̄q such that Ec is guar-
anteed to be stable and the global error specification ε̄c for the
interconnected system is satisfied using the following theorem.

Theorem 4.6. Let ε̄c > 0 be given. Let Ej ∈ RH∞ and let ε̄j such
that ∥Ej∥∞ ≤ ε̄j for all j ̸= q. Consider the optimization problem

given ε̄c, ε̄j, j ̸= q
maximize
Dℓ,Dr ,WG

ε̄q

subject to N(iω)WGDrWGNH (iω) ≺ Dℓ ∀ ω,

(Dℓ,Dr ) ∈ D (4.8)

with WG
:= diag(ε̄1Im1 , . . . , ε̄kImk , ε̄

−1
c Ipc ) and D as in (3.17). If

ε̄⋆
q is a feasible solution to (4.8), then for all Eq ∈ RH∞ such that

∥Eq∥∞ ≤ ε̄⋆
q , we have

(1) Ec is well-posed,
(2) Ec is internally stable, and
(3) ∥Ec∥∞ < ε̄⋆

c .

Proof. The proof follows directly from the proof of
Theorem 4.1. □

Theorem 4.6 guarantees that if ε̄⋆
q exists, all error dynamics

E introduced by reduction of subsystem q satisfying ∥E ∥ ≤
q q ∞

8

ε̄⋆
q result in stable interconnected system model reduction error

dynamics bounded by ∥Ec∥∞ < ε̄c . The problem (4.8) can be
simplified similar to the global bottom-up problem as in (4.1).
Here, we set dq = 1 and set γ := ε̄2

q . Then, the inequality in (4.8)
is linear for the decision variables dc , dj for all j ̸= q, and γ and
maximizing γ using SDP gives a maximum global upper bound
on the (allowed) subsystem error dynamics ∥Eq∥∞ ≤ ε̄q. If some
reduced-order subsystem Ĝq is found for which the upper bound
ε̄q is satisfied, Theorem 4.6 guarantees that ∥Ec∥∞ ≤ ε̄c .

This top-down problem is easily translated to a frequency-
dependent problem using Theorem 3.4. Namely, we consider
some frequency-dependent error specification εc(ω) for which we
can guarantee that σ̄ (Ec(iω)) ≤ εc(ω). Additionally, we assume
that some subsystem error bound σ̄ (Ej(iω)) ≤ εj(ω) of all subsys-
ems j ̸= q is known. Then, we aim to find a frequency-dependent
rror specification εq(ω) for which it holds that σ̄ (Eq(iω)) ≤ εq(ω)
sing the following theorem that can be applied to any (discrete
et of frequencies) ω ∈ R.

heorem 4.7. Let ω in R. Let εj(ω) be such that σ̄ (Ej(iω)) ≤ εj(ω)
or all j ̸= q. Consider the optimization problem

given εc(ω), εj(ω), j ̸= q
maximize
ℓ,Dr ,W F (ω)

εq(ω)

subject to N(iω)W F (ω)DrW F (ω)NH (iω) ≺ Dℓ,

(Dℓ,Dr ) ∈ D (4.9)

ith W F (ω) := diag
(
ε1(ω)Im1 , . . . , εk(ω)Imk , ε

−1
c (ω)Ipc

)
and D as in

3.17). If ε⋆
q(ω) is a feasible solution to (4.9), then for all Eq such that

¯ (Eq(iω)) ≤ ε⋆
q(ω), we have σ̄ (Ec(iω)) < εc(ω).

roof. The proof follows directly from the proof of
heorem 4.3. □

Theorem 4.7 guarantees that if ε⋆
q(ω) exists for ω, then any

rror dynamics at Eq(iω) introduced by reduction of subsystem
satisfying σ̄ (Eq(iω)) ≤ ε⋆

q(ω) results in interconnected system
rror dynamics bounded by σ̄ (Ec(iω)) < εc(ω) at frequency ω.
The problem (4.9) can be simplified similar to the frequency-

ependent bottom-up problem as in (4.5). Here, we set dq = 1
nd set γ := ε2

q (ω). Then, problem (4.9) is linear for the decision
ariables dc , dj for all j ̸= q, and γ and maximizing γ using
DP for any ω ∈ R gives a frequency-dependent upper bound
n the subsystem error dynamics σ̄ (Eq(iω)) ≤ εq(ω). If some
educed-order subsystem Ĝq is found for which this upper bound
s satisfied, Theorem 4.7 guarantees that σ̄ (Ec(iω)) ≤ εc(ω). By
omputing (4.5) over a frequency grid, this guarantee holds for
he ω ∈ R of interest.

emark 4.8. For the top-down approach, a frequency-dependent
rror bound σ̄ (Ec(iω)) ≤ εc(ω) can be defined by the user based
n requirements on the interconnected model accuracy. This
llows for the flexibility to design specifications on the intercon-
ected system such that the reduced-order system is accurate
n frequencies ranges that are relevant for the way the model
s used. If the reduced-order interconnected system model needs
o be especially accurate in a certain frequency range, the error
equirement εc(ω) can be chosen low in this frequency range, en-
orcing a higher accuracy in this frequency range. After applying
he top-down approach, meeting the specification of frequency-
ependent error bounds on subsystem level σ̄ (Eq(iω)) ≤ εq(ω)
uarantees accuracy around this frequency.

In this section, we have given several approaches to compute a
elation between bounds on Ej and Ec using µ-analysis. To prop-
rly illustrate how these approaches can be useful for modular
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Table 1
Parameter values of each subsystem in the example system. In addition,
information about finite element discretization, the state-space dimensions of
a minimal realization of the high-order subsystems, and the number of inputs
and outputs per subsystem are specified.
Parameter Subsys. 1 Subsys. 2 Subsys. 3

Cross-sect. area [m2] 1 × 10-5 1 × 10-5 1 × 10-5

2nd area moment [m4] 1 × 10-9 1 × 10-9 1 × 10-9

Young’s modulus [Pa] 2 × 1011 2 × 1011 2 × 1011

Mass density [kg/m3] 8 × 103 8 × 103 8 × 103

Modal damping [–] 0.06 0.06 0.06
Length [m] 1 0.4 0.6
# of elements [–] 100 40 60

Transfer function G1(s) G2(s) G3(s)

# of states nj [–] 400 164 240
# of inputs mj [–] 2 5 2
# of outputs pj [–] 2 4 3

model reduction of systems of interconnected LTI systems, in the
next section, an illustrative example from structural dynamics on
which these approaches are applied will be discussed.

5. Illustrative example

To illustrate the proposed framework for error analysis of
odular model reduction of interconnected systems, we apply

t to a mechanical system consisting of three interconnected
eams as illustrated schematically in Fig. 6. Subsystems 1 and 3
re cantilever beams which are connected on their free ends to
ree-free beam 2 with translational and rotational springs. The
tiffness of both translational interconnecting springs is kt1 =
t
2 = 4×104 N/m. The stiffness of both rotational interconnecting

springs is kr1 = kr2 = 4 × 102 Nm/rad. The interconnection
tructure matrix K in (2.2) is therefore given by

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

-kt1 0 kt1 0 0 0 0 0 0 0
0 -kr1 0 kr1 0 0 0 0 0 0
kt1 0 -kt1 0 0 0 0 0 0 0
0 kr1 0 -kr1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 -kt2 0 kt2 0 0 0
0 0 0 0 0 -kr2 0 kr2 0 0
0 0 0 0 kt2 0 -kt2 0 0 0
0 0 0 0 0 kr2 0 -kr2 0 0
0 0 0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(5.1)

he external input force uc [N] is applied to the middle of sub-
ystem 2 in the transversal direction. The external output dis-
lacement yc [m] is measured at the middle of subsystem 3 in
he transversal direction.

Each beam/subsystem is discretized by linear two-node Euler
eam elements (only bending, no shear, see Craig and Kurdila
2006)) of equal length. Per node we have one translational
egree of freedom (dof), i.e., a transversal displacement, and
ne rotational dof. For each beam, viscous damping is modelled
sing 6% modal damping. Physical and geometrical parameter
alues of the three beams and information about finite element
iscretization, the number of states and the number of subsystem
nputs and outputs are given in Table 1. With this information we
an construct G1(s), G2(s) and G3(s) and the interconnected system
c(s) is then given according to Section 2 where k = 3 and K is

defined by 5.1.
Below, both the bottom-up and the top-down approaches

from Section 4 are concisely illustrated. First, in Section 5.1, we

consider a bottom-up problem in which we show how the error

9

Fig. 6. Example system: two cantilever beams (Subsystems 1 and 3) connected
on their free ends to a free-free beam (Subsystem 2) with translational and
rotational springs.

in the interconnected system introduced by the reduction of sub-
system 1 can be bounded first by using a global error bound and
then by using a frequency-dependent error bound. Subsequently,
in Section 5.2, we show how specifications on the accuracy of
the reduced-order interconnected system can be translated to
frequency-dependent bounds on the reduction error of subsystem
1 and how this information can be used to find a ROM that takes
this frequency-dependent bound into account.

5.1. Bottom-up approach

In the bottom-up approach, we use Theorems 4.1 and 4.3 to
find both global and frequency-dependent a priori bounds on the
reduction error of the interconnected system model shown in
Fig. 6. Note that in this example, subsystem 1 is reduced using
balanced truncation (Antoulas, 2005) to find some Ĝ1(s) whereas
he models of subsystems 2 and 3 are left unreduced.

First, we consider two types of errors on E1:

(1) A priori error bounds ∥E1∥∞ ≤ ε̄1 using the Hankel singular
values as in (2.9).

(2) The actual H∞-norm of the error dynamics ∥E1∥∞ = ε̄1,a,
determined after the reduction of the subsystem.

emark 5.1. Note that ε̄1 is used to determine a priori error
ounds ε̄c on the interconnected system. However, these a priori
rror bounds already have some conservativeness on a subsys-
em level. The gap between ε̄c,a and ε̄c indicates how much of
onservativeness of ε̄c is attributed to the conservativeness of ε̄1.

These errors are computed for varying values of the reduced-
rder r1 of subsystem 1. Second, the bottom-up SDP problem in
heorem 4.1 is solved for the resulting values for ε̄1 and ε̄1,a.
he solution to these SDPs provides an error bound ∥Ec∥∞ ≤

¯c and ∥Ec∥∞ ≤ ε̄c,a for ε̄1 and ε̄1,a, respectively. Additionally,
o compare the method to the existing a priori error bound
or such systems, ∥Ec∥∞ ≤ ε̄c,Reis from Reis and Stykel (2007,
heorem 3.1) is computed. Finally, to compare how conservative
he error bounds are with respect to different orders of reduction,
¯c,a/∥Ec∥∞ and ε̄c/∥Ec∥∞ are determined. The results are given in
able 2.

emark 5.2. Note that the actual ∥Ec∥∞ can only be computed
posteriori (so after the reduction has been pursued and the

educed-order interconnected system has been constructed). We
mphasize that the methodology in this paper allows to compute
he bounds for ∥Ec∥∞ a priori.

From Table 2, we can make several observations. Solving the
ottom-up SDP problem in Theorem 4.1 provides an a priori
lobal error bound on the error dynamics of the interconnected
ystem ∥Ec∥∞ using global error bounds on subsystem level. Ad-
itionally, for the H∞-norm of the actual error dynamics ε̄c,a, the
ottom-up approach provides tight(er) error bounds on the level
f the interconnected system, as indicated by the small values of

¯ /∥E ∥ . In contrast, since the values of ε̄ /∥E ∥ are clearly
c,a c ∞ c c ∞
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Table 2
Bottom-up global error bounds example: comparison between ∥Ec∥∞ ≤ ε̄c,a ≤ ε̄c and ε̄c,Reis for a different number of states r1 in the reduced-order subsystem Ĝ1 .
o show conservativeness of the error bounds, ε̄c,a/∥Ec∥∞ , ε̄c/∥Ec∥∞ and ε̄c,Reis/∥Ec∥∞ are given. ε̄1/∥E1∥∞ shows the conservativeness present in the a priori error
ound on subsystem level. If no error bound could be found, the result is denoted with ‘‘–’’.
r1 [–] Actual error Error bounds Conservativeness factor

∥Ec∥∞ [m/N] ε̄c,a [m/N] ε̄c [m/N] ε̄c,Reis [m/N] ε̄c,a
∥Ec∥∞

ε̄c
∥Ec∥∞

ε̄c,Reis
∥Ec∥∞

ε̄1
∥E1∥∞

400 (n1) 0 0 0 0 – – – –

140 2.59 × 10−9 3.52 × 10−9 1.03 × 10−7 9.31 × 10−4 1.36 40.0 3.60 × 105 2.25
120 5.01 × 10−9 6.02 × 10−9 5.74 × 10−7 5.12 × 10−3 1.20 115 1.02 × 106 6.46
100 1.89 × 10−8 2.90 × 10−8 3.43 × 10−6 – 1.53 181 – 99.2
80 4.32 × 10−8 1.18 × 10−7 3.46 × 10−5 – 2.73 801 – 163
60 9.04 × 10−8 5.44 × 10−7 – – 6.01 – – 223
40 2.19 × 10−6 2.30 × 10−5 – – 10.5 – – 56.0
20 1.00 × 10−4 – – – – – – 9.25
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Fig. 7. Bottom-up approach: Magnitude plot for the high-order interconnected
system |Gc (iω)|, the reduced-order interconnected system |Ĝc (iω)| with r1 = 60,
the a priori error bound using a priori frequency-dependent subsystem errors
|Gc (iω)| ± εc (ω) and the frequency-dependent error bound using the largest
singular values of the actual subsystem error |Gc (iω)|±εc,a(ω). (For interpretation
of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 8. Bottom-up approach: Magnitude plot for the interconnected system error
dynamics |Ec (iω)| with r1 = 60, the a priori frequency-dependent error bound
using a priori subsystem errors εc (ω) and the frequency-dependent error bound
using the largest singular values of the actual subsystem error εc,a(ω). (For
nterpretation of the references to colour in this figure legend, the reader is
eferred to the web version of this article.)

igher, the error bound using the a priori errors on the subsystem
evel ∥E1∥∞ ≤ ε̄1 is significantly more conservative. However,
the subsystem a priori error bound ε̄1 already provides some
evel of conservativeness, as indicated by the values of ε̄1/∥E1∥∞.
herefore, we postulate that the conservativeness of the a priori
rror bound ε̄c/∥Ec∥∞ is for a significant part attributed to the
onservativeness of ε̄1/∥E1∥∞. Additionally, in comparison with
he existing a priori error bound from Reis and Stykel (2007),
¯c is significantly less conservative, i.e., for r1 = 140 and r1 =

20, ε̄c,Reis is around 104 times more conservative, and it is not
vailable for r1 ≤ 100.
As can be seen in Table 2, for this example, no global a

riori error bound ε̄ can be found for a reduction of r ≤ 60
c 1

10
sing Theorem 4.1 with ε̄1. However, although no global error
ound on Ec can be found for significant reduction of subsystem
, frequency-dependent bounds can still be found for intervals
∈ R. Below, we show how Theorem 4.3 can be used to find

requency-dependent error bounds on Ec . Frequency-dependent
rror bounds can be computed to provide useful insights on
ow reduction errors on the subsystem level propagate to the
nterconnected system.

First, we compute a reduced-order model Ĝ1 for subsystem 1
sing balanced truncation with r1 = 60. Then, we consider and
alculate two types of errors on E1(s):

(1) The same a priori error bounds ∥E1∥∞ ≤ ε̄1 as in the global
case (see Remark 4.4).

(2) Frequency-dependent error bounds ε1,a(ω) as the largest
singular value of the actual error dynamics σ̄ (E1(iω)) =

ε1,a(ω), determined after the reduction of the subsystem.

econd, the bottom-up SDP problem in Theorem 4.3 is solved
or the resulting values for ε1(ω) = ε̄1 and ε1,a(ω). The solution
o these SDPs provides an error bound σ̄ (Ec(iω)) ≤ εc(ω) and
¯ (Ec(iω)) ≤ εc,a(ω) for each ε1(ω) = ε̄1 and ε1,a(ω), respectively,
s shown in Figs. 7 and 8.
From these figures, we can make several observations. In

igs. 7 and 8, in the green areas, the frequency-dependent a priori
rror bound εc,a(ω) (based on ε1,a(ω)) is found for all frequencies
n the shown domain. In Fig. 8, it can be clearly seen that this
ound is particularly tight. Therefore, in Fig. 7, the effect of εc,a(ω)
s not even visible. Additionally, it can be seen in the red areas,
hich illustrate the frequency-dependent a priori error bound
c(ω), that for several frequencies in the shown domain, no bound
c(ω) is found. This is in agreement with Table 2, where the
ottom-up approach indeed cannot find a global a priori error
ound εc(ω) for r1 = 60. However, for most other frequencies, an
priori error bound εc(ω) can still be computed. In total, both εc
nd εc,a give a clear frequency-dependent reduction error bound
or the largest part of the frequency domain, which can be used
o give a frequency-dependent upper bound on how substructure
eduction errors propagate to the interconnected system, even
hen no global error bound can be found. The inverse of this
roblem, finding an upper bound on subsystem errors based on
equirements on the interconnected system, is shown on the
ame system in the next section.

.2. Top-down approach

In this example, the top-down approach using the optimiza-
ion problem in Theorem 4.7 is applied to the example system
n Fig. 6. Specifically, a required frequency-dependent reduction
rror bound σ̄ (E1(iω)) ≤ ε1(ω) for subsystem 1 is computed
hat guarantees a user-selected frequency-dependent error bound
¯ (E (iω)) ≤ ε (ω) on the interconnected system. Additionally,
c c
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Fig. 9. Top-down approach: Magnitude plot for the high-order interconnected
system |Gc (iω)|, the reduced-order interconnected system |Ĝc (iω)| with r1 = 20,
the a priori frequency-dependent error bound using the actual subsystem error
bounds |Gc (iω)| ± ε̂c (ω) and the user defined frequency-dependent error bound
|Gc (iω)| ± εc (ω). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 10. Top-down approach: Magnitude plot for the high-order interconnected
error dynamics |Ec (iω)| with r1 = 20, the frequency-dependent error bound
using the actual subsystem errors ε̂c (ω) and the user defined frequency-
dependent error bound εc (ω). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Top-down approach: Magnitude plot of the high-order subsystem
G1,ij(iω)|, the reduced-order subsystem |Ĝ1,ij(iω)| with r1 = 20 and the allowed
requency-dependent error with the top-down approach |G1,ij(iω)| ± ε1(ω) from
input i to output j. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

a reduced-order subsystem Ĝ1(s) is computed that meets these
equirements. Recall that subsystems 2 and 3 remain unreduced,
.e., ε̄2 = ε2(ω) = ε̄3 = ε3(ω) = 0. The computation of Ĝ1(s)
erves two purposes. Namely, (1) to validate the results, and (2)
o show how frequency-weighted balanced truncation can exploit
11
Fig. 12. Top-down approach: Largest singular value plot of the high-order
subsystem error dynamics σ̄ (E1(iω)) with r1 = 20 and the allowed frequency-
dependent error found using the top-down approach ε1(ω). (For interpretation
of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

the frequency information in the error bounds to increase the
amount of reduction that can be achieved.

Remark 5.3. Note that any reduced-order subsystem Ĝ1(s) for
which σ̄ (E1(iω)) ≤ ε1(ω) holds for the specified frequencies can
be used, regardless of the model reduction method. Frequency-
weighted balanced truncation is a special form of balanced trun-
cation in which the goal is to reduce the frequency-weighted
error between G(s) and Ĝ(s) (Gugercin & Antoulas, 2004). This
method is particularly suitable for the top-down approach since
it allows to capitalize on the computed frequency-dependent
error bound ε1(ω) for the reduction of the subsystem. Specifi-
cally, we can directly apply the computed W F in Theorem 4.7
as a weighting for the reduction. In this example, we use Enns’
method (Enns, 1984) to minimize ∥W F

1 E1∥∞ (whereas regular
balanced truncation minimizes ∥E1∥∞).

The top-down approach is applied in this example by carrying
out the following steps:

(1) All frequencies ω over a grid of 1000 logarithmically spaced
points in the interval [101.5, 104

] rad/s are evaluated. For
these frequencies, a frequency-dependent error bound εc(ω)
is defined, as can be done by the user (see Remark 4.8). In
this example, this bound is chosen as some fraction β1 of
the magnitude of σ̄ (Gc(iω)), bounded below by β2, given as

εc(ω) = max{β1 · σ̄ (Gc(iω)), β2}, (5.2)

where β1 = 0.1 and β2 = 5 × 10−7 in this example. In
Figs. 9 and 10, this bound εc(ω) is indicated by the red
areas.

(2) The SDP problem in Theorem 4.7 is solved using εc(ω) with
q = 1 to find some frequency-dependent error bound ε1(ω)
on the error dynamics of the first subsystem. Note that
we assume unreduced subsystems 2 and 3, and therefore
ε2(ω) = ε3(ω) = 0. The error bound ε1(ω) corresponding
to εc(ω) is indicated by the red areas in Figs. 11 and 12.

(3) A reduced-order subsystem Ĝ1 with r1 = 20 is found using
frequency-weighted balanced truncation (see Remark 5.3)
for which σ̄ (E1(iω)) ≤ ε1(ω) holds, as shown by the red
lines in Figs. 11 and 12.

(4) For validation, the bottom-up approach as given in The-
orem 4.3 is solved to find some a priori worst-case up-
per bound on the interconnected system error dynamics
σ̄ (Ec(iω)) ≤ ε̂c(ω) caused by the replacement of G1 by Ĝ1
in the interconnected system. In Figs. 9 and 10, this bound

ε̂c(ω) is indicated by the green areas.
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(5) As additional validation, the reduced-order interconnected
system Ĝc and the error dynamics Ec are computed and
shown by the red line in Figs. 9 and 10, which are indeed
fully within the red and green areas.

emark 5.4. Note that in theory, if σ̄ (E1(iω)) would match
he allowed error bound ε1(ω) in Fig. 12, we would see that
ˆc(ω) = εc(ω) in Fig. 10. However, after reduction, Fig. 12 shows
hat the largest singular values σ̄ (E1(iω)) of the reduced-order
ubsystem 1 do not fully ‘‘utilize’’ the allowed error ε1(ω). As a
esult, in Fig. 10, we can see that ε̂c(ω) is much smaller than
c(ω). Therefore, the distance between |Ec(iω)| and εc(ω) in Fig. 10

is a combination between the conservativeness of the top-down
approach, given by the gap in |Ec(iω)| < ε̂c(ω), and the fact that
σ̄ (E1(iω)) ≤ ε1(ω), which results in the gap in ε̂c(ω) ≤ εc(ω).

In summary, this example shows that the top-down approach
can be effectively used to find subsystem 1 error bounds given
some interconnected system accuracy specification. This trans-
lation from requirements on the interconnected system to re-
quirements on a subsystem level is particularly useful because
(1) any reduced-order subsystem model that satisfies the bounds
is guaranteed not to cause the error in the interconnected system
to exceed the required accuracy, and (2) a reduced-order subsys-
tem model can be developed by making use of the frequency-
dependent error bound, in this case using frequency-weighted
balanced truncation (see Remark 5.3), to further reduce the in-
terconnected system model.

6. Conclusions

Modular model reduction is a computationally efficient
method that allows for the computation of ROMs of intercon-
nected (multidisciplinary and multi-physical) subsystems. How-
ever, generally, modular model reduction leads to less accurate
ROMs of the interconnected system in comparison to costly direct
(structure-preserving) reduction methods. In this paper, to miti-
gate this accuracy disadvantage, a mathematical relation between
the accuracy of reduced subsystem models and the accuracy of
the reduced interconnected system model is introduced.

The main idea relies on defining the error dynamics intro-
duced by the MOR of a subsystem as a block-diagonal structured
uncertainty. Then, the system can be reformulated into the frame-
work of a robust performance problem. This allows for a direct
computation of a relation between upper bounds of subsystem
reduction error dynamics to upper bounds on the interconnected
system reduction error dynamics using the structured singular
value µ.

This relation can then be used in the two ways. (1) a bottom-
up approach can be used to guarantee stability of the
interconnected, reduced-order system and determine (frequency-
dependent) a priori error bounds for interconnected systemmodel
reduction when a priori error bounds are available for the re-
duced subsystem models. (2) a top-down approach allows the
user to define (frequency-dependent) accuracy specifications on
the reduced interconnected system model. These specifications
can then be translated to (frequency-dependent) accuracy re-
quirements on reduced subsystem models. When these are
achieved, they guarantee that the user-defined specifications on
the interconnected system hold. Additionally, this allows for
the effective use of frequency-weighted balanced truncation to
achieve reduction of the subsystem while guaranteeing that the
interconnected system accuracy specifications are met and re-
mains stable. To demonstrate the use of these approaches, they
have been applied to a structural dynamics beam system.
12
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