465 research outputs found

    A single-phase bcc high-entropy alloy in the refractory Zr-Nb-Ti-V-Hf system

    Full text link
    We report on the production and characterization of a high-entropy alloy in the refractory Zr-Nb-Ti-V-Hf system. Equiatomic ingots were produced by arc and levitation melting, and were subsequently homogenized by high-temperature annealing. We obtained a coarse-grained, single-phase high-entropy alloy, with a homogeneous distribution of the constituting elements. The phase is a chemically disordered solid solution, based on a bcc lattice with a lattice parameter of 0.336(5) nm.Comment: 6 pages, 4 figure

    Tiling models for metadislocations in AlPdMn approximants

    Full text link
    The AlPdMn quasicrystal approximants xi, xi', and xi'_n of the 1.6 nm decagonal phase and R, T, and T_n of the 1.2 nm decagonal phase can be viewed as arrangements of cluster columns on two-dimensional tilings. We substitute the tiles by Penrose rhombs and show, that alternative tilings can be constructed by a simple cut and projection formalism in three dimensional hyperspace. It follows that in the approximants there is a phasonic degree of freedom, whose excitation results in the reshuffling of the clusters. We apply the tiling model for metadislocations, which are special textures of partial dislocations.Comment: 7 pages, 2 figures, Proceedings of International Conference on Quasicrystals

    Cleaved surface of i-AlPdMn quasicrystals: Influence of the local temperature elevation at the crack tip on the fracture surface roughness

    Get PDF
    Roughness of i-AlPdMn cleaved surfaces are presently analysed. From the atomic scale to 2-3 nm, they are shown to exhibit scaling properties hiding the cluster (0.45 nm) aperiodic structure. These properties are quantitatively similar to those observed on various disordered materials, albeit on other ranges of length scales. These properties are interpreted as the signature of damage mechanisms occurring within a 2-3 nm wide zone at the crack tip. The size of this process zone finds its origin in the local temperature elevation at the crack tip. For the very first time, this effect is reported to be responsible for a transition from a perfectly brittle behavior to a nanoductile one.Comment: 8 page

    Metadislocation arrangements in the complex metallic alloy ξ

    Full text link

    Ultrafast non-linear optical signal from a single quantum dot: exciton and biexciton effects

    Full text link
    We present results on both the intensity and phase-dynamics of the transient non-linear optical response of a single quantum dot (SQD). The time evolution of the Four Wave Mixing (FWM) signal on a subpicosecond time scale is dominated by biexciton effects. In particular, for the cross-polarized excitation case a biexciton bound state is found. In this latter case, mean-field results are shown to give a poor description of the non-linear optical signal at small times. By properly treating exciton-exciton effects in a SQD, coherent oscillations in the FWM signal are clearly demonstrated. These oscillations, with a period corresponding to the inverse of the biexciton binding energy, are correlated with the phase dynamics of the system's polarization giving clear signatures of non-Markovian effects in the ultrafast regime.Comment: 10 pages, 3 figure
    corecore