67 research outputs found
Artistic explorations of the brain
The symbiotic relationships between art and the brain begin with the obvious fact that brain mechanisms underlie the creation and appreciation of art. Conversely, many spectacular images of neural structures have remarkable aesthetic appeal. But beyond its fascinating forms, the many functions performed by brain mechanisms provide a profound subject for aesthetic exploration. Complex interactions in the tangled neural networks in our brain miraculously generate coherent behavior and cognition. Neuroscientists tackle these phenomena with specialized methodologies that limit the scope of exposition and are comprehensible to an initiated minority. Artists can perform an end run around these limitations by representing the brain's remarkable functions in a manner that can communicate to a wide and receptive audience. This paper explores the ways that brain mechanisms can provide a largely untapped subject for artistic exploration
Correlation-based model of artificially induced plasticity in motor cortex by a bidirectional brain-computer interface
Experiments show that spike-triggered stimulation performed with
Bidirectional Brain-Computer-Interfaces (BBCI) can artificially strengthen
connections between separate neural sites in motor cortex (MC). What are the
neuronal mechanisms responsible for these changes and how does targeted
stimulation by a BBCI shape population-level synaptic connectivity? The present
work describes a recurrent neural network model with probabilistic spiking
mechanisms and plastic synapses capable of capturing both neural and synaptic
activity statistics relevant to BBCI conditioning protocols. When spikes from a
neuron recorded at one MC site trigger stimuli at a second target site after a
fixed delay, the connections between sites are strengthened for spike-stimulus
delays consistent with experimentally derived spike time dependent plasticity
(STDP) rules. However, the relationship between STDP mechanisms at the level of
networks, and their modification with neural implants remains poorly
understood. Using our model, we successfully reproduces key experimental
results and use analytical derivations, along with novel experimental data. We
then derive optimal operational regimes for BBCIs, and formulate predictions
concerning the efficacy of spike-triggered stimulation in different regimes of
cortical activity.Comment: 35 pages, 9 figure
Local field potentials and single unit dynamics in motor cortex of unconstrained macaques during different behavioral states
Different sleep stages have been shown to be vital for a variety of brain functions, including learning, memory, and skill consolidation. However, our understanding of neural dynamics during sleep and the role of prominent LFP frequency bands remain incomplete. To elucidate such dynamics and differences between behavioral states we collected multichannel LFP and spike data in primary motor cortex of unconstrained macaques for up to 24 h using a head-fixed brain-computer interface (Neurochip3). Each 8-s bin of time was classified into awake-moving (Move), awake-resting (Rest), REM sleep (REM), or non-REM sleep (NREM) by using dimensionality reduction and clustering on the average spectral density and the acceleration of the head. LFP power showed high delta during NREM, high theta during REM, and high beta when the animal was awake. Cross-frequency phase-amplitude coupling typically showed higher coupling during NREM between all pairs of frequency bands. Two notable exceptions were high delta-high gamma and theta-high gamma coupling during Move, and high theta-beta coupling during REM. Single units showed decreased firing rate during NREM, though with increased short ISIs compared to other states. Spike-LFP synchrony showed high delta synchrony during Move, and higher coupling with all other frequency bands during NREM. These results altogether reveal potential roles and functions of different LFP bands that have previously been unexplored
Case Study of Ecstatic Meditation: fMRI and EEG Evidence of Self-Stimulating a Reward System
We report the first neural recording during ecstatic meditations called jhanas and test whether a brain reward system plays a role in the joy reported. Jhanas are Altered States of Consciousness (ASC) that imply major brain changes based on subjective reports: (1) external awareness dims, (2) internal verbalizations fade, (3) the sense of personal boundaries is altered, (4) attention is highly focused on the object of meditation, and (5) joy increases to high levels. The fMRI and EEG results from an experienced meditator show changes in brain activity in 11 regions shown to be associated with the subjective reports, and these changes occur promptly after jhana is entered. In particular, the extreme joy is associated not only with activation of cortical processes but also with activation of the nucleus accumbens (NAc) in the dopamine/opioid reward system. We test three mechanisms by which the subject might stimulate his own reward system by external means and reject all three. Taken together, these results demonstrate an apparently novel method of self-stimulating a brain reward system using only internal mental processes in a highly trained subject
Dynamic Modulation of Local Population Activity by Rhythm Phase in Human Occipital Cortex During a Visual Search Task
Brain rhythms are more than just passive phenomena in visual cortex. For the first time, we show that the physiology underlying brain rhythms actively suppresses and releases cortical areas on a second-to-second basis during visual processing. Furthermore, their influence is specific at the scale of individual gyri. We quantified the interaction between broadband spectral change and brain rhythms on a second-to-second basis in electrocorticographic (ECoG) measurement of brain surface potentials in five human subjects during a visual search task. Comparison of visual search epochs with a blank screen baseline revealed changes in the raw potential, the amplitude of rhythmic activity, and in the decoupled broadband spectral amplitude. We present new methods to characterize the intensity and preferred phase of coupling between broadband power and band-limited rhythms, and to estimate the magnitude of rhythm-to-broadband modulation on a trial-by-trial basis. These tools revealed numerous coupling motifs between the phase of low-frequency (δ, θ, α, β, and γ band) rhythms and the amplitude of broadband spectral change. In the θ and β ranges, the coupling of phase to broadband change is dynamic during visual processing, decreasing in some occipital areas and increasing in others, in a gyrally specific pattern. Finally, we demonstrate that the rhythms interact with one another across frequency ranges, and across cortical sites
Open-Source, Low Cost, Free-Behavior Monitoring, and Reward System for Neuroscience Research in Non-human Primates
We describe a low-cost system designed to document bodily movement and neural activity and deliver rewards to monkeys behaving freely in their home cage. An important application is to studying brain-machine interface (BMI) systems during free behavior, since brain signals associated with natural movement can differ significantly from those associated with more commonly used constrained conditions. Our approach allows for short-latency (<500 ms) reward delivery and behavior monitoring using low-cost off-the-shelf components. This system interfaces existing untethered recording equipment with a custom hub that controls a cage-mounted feeder. The behavior monitoring system uses a depth camera to provide real-time, easy-to-analyze, gross movement data streams. In a proof-of-concept experiment we demonstrate robust learning of neural activity using the system over 14 behavioral sessions
Volitional Control of Cortical Oscillations and Synchrony
Oscillatory activity in motor cortex has been observed in many experimental contexts, leading to various hypotheses about its possible behavioral function. In this issue of Neuron, Engelhard et al. (2013) report that oscillations can be volitionally controlled, opening new directions to explore their function and underlying mechanisms
- …