8 research outputs found

    Carbamazepine induces focused T cell responses in resolved Stevens-Johnson syndrome and toxic epidermal necrolysis cases but does not perturb the immunopeptidome for T cell recognition

    Get PDF
    Antiseizure medications (ASMs) are frequently implicated in T cell-mediated drug hypersensitivity reactions and cause skin tropic pathologies that range in severity from mild rashes to life-threatening systemic syndromes. During the acute stages of the more severe manifestations of these reactions, drug responsive proinflammatory CD8+ T cells display classical features of Th1 cytokine production (e.g. IFNÎł) and cytolysis (e.g. granzyme B, perforin). These T cells may be found locally at the site of pathology (e.g. blister cells/fluid), as well as systemically (e.g. blood, organs). What is less understood are the long-lived immunological effects of the memory T cell pool following T cell-mediated drug hypersensitivity reactions. In this study, we examine the ASM carbamazepine (CBZ) and the CBZ-reactive memory T cell pool in patients who have a history of either Stevens-Johnson syndrome (SJS) or toxic epidermal necrolysis (TEN) from 3-to-20 years following their initial adverse reaction. We show that in vitro drug restimulation of CBZ-reactive CD8+ T cells results in a proinflammatory profile and produces a mainly focused, yet private, T cell receptor (TCR) usage amongst human leukocyte antigen (HLA)-B*15:02-positive SJS or TEN patients. Additionally, we show that expression of these CBZ-reactive TCRs in a reporter cell line, lacking endogenous αÎČTCR, recapitulates the features of TCR activation reported for ASM-treated T cell lines/clones, providing a useful tool for further functional validations. Finally, we conduct a comprehensive evaluation of the HLA-B*15:02 immunopeptidome following ASM (or a metabolite) treatment of a HLA-B*15:02-positive B-lymphoblastoid cell line (C1R.B*15:02) and minor perturbation of the peptide repertoire. Collectively, this study shows that the CBZ-reactive T cells characterized require both the drug and HLA-B*15:02 for activation and that reactivation of memory T cells from blood results in a focused private TCR profile in patients with resolved disease

    The allopurinol metabolite, oxypurinol, drives oligoclonal expansions of drug‐reactive T cells in resolved hypersensitivity cases and drug‐naïve healthy donors

    Get PDF
    Allopurinol (ALP) is a successful drug used in the treatment of gout. However, this drug has been implicated in hypersensitivity reactions that can cause severe to life‐threatening reactions such as Stevens–Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN). Individuals who carry the human leukocyte antigen (HLA)‐B*58:01 allotype are at higher risk of experiencing a hypersensitivity reaction (odds ratios ranging from 5.62 to 580.3 for mild to severe reactions, respectively). In addition to the parent drug, the metabolite oxypurinol (OXP) is implicated in triggering T cell‐mediated immunopathology via a labile interaction with HLA‐B*58:01. To date, there has been limited information regarding the T‐cell receptor (TCR) repertoire usage of reactive T cells in patients with ALP‐induced SJS or TEN and, in particular, there are no reports examining paired αÎČTCRs. Here, using in vitro drug‐treated PBMCs isolated from both resolved ALP‐induced SJS/TEN cases and drug‐naĂŻve healthy donors, we show that OXP is the driver of CD8+ T cell‐mediated responses and that drug‐exposed memory T cells can exhibit a proinflammatory immunophenotype similar to T cells described during active disease. Furthermore, this response supported the pharmacological interaction with immune receptors (p‐i) concept by showcasing (i) the labile metabolite interaction with peptide/HLA complexes, (ii) immunogenic complex formation at the cell surface, and (iii) lack of requirement for antigen processing to elicit drug‐induced T cell responsiveness. Examination of paired OXP‐induced αÎČTCR repertoires highlighted an oligoclonal and private clonotypic profile in both resolved ALP‐induced SJS/TEN cases and drug‐naĂŻve healthy donors

    Utility and Clinical Application of Circulating Tumor DNA (ctDNA) in Advanced Prostate Cancer

    No full text
    The treatment landscape for metastatic prostate cancer has undergone significant changes in recent years. The availability of next-generation imaging techniques and the emergence of novel therapies have led to earlier and more aggressive treatment approaches for patients. However, despite these advancements, drug resistance and progression to castration-resistant disease remain inevitable. Understanding the molecular landscape of advanced prostate cancer lies at the forefront of being able to deliver personalized therapies and more robustly risk-stratify patients, when combined with clinical factors. Advanced prostate cancer is characterized by inter- and intratumoral heterogeneity, posing challenges in comprehensively analyzing the genomic tumor profile using a solitary tissue sample. Additionally, the disease often manifests as bone-predominant metastatic tumors, making biopsies impractical in many cases. Moreover, archival tissue samples from a prostatectomy specimen may not accurately represent the current state of the tumor. To overcome these limitations, liquid biopsies using plasma samples have emerged as a minimally invasive surrogate approach to obtain real-time information on the genomic tumor profile. Growing evidence confirms the excellent concordance of liquid biopsies with tissue samples, making them an attractive alternative to traditional tissue biopsies. These assays can provide predictive and prognostic information that may enhance patient discussions and influence treatment decisions. This review focuses on the evolution and utility of circulating tumor-derived DNA (ctDNA) liquid biopsy assays in metastatic prostate cancer

    BRCA-deficient metastatic prostate cancer has an adverse prognosis and distinct genomic phenotypeResearch in context

    No full text
    Summary: Background: Genomic alterations in DNA damage response (DDR) genes are common in metastatic castration-resistant prostate cancer (mCRPC). Understanding how these genomic events impact prognosis and/or treatment response is vital for optimising clinical outcomes. Methods: Targeted sequencing was performed on 407 plasma samples from 375 men with mCRPC. Using the CLIA-certified PredicineCAREℱ cell-free DNA (cfDNA) assay, pathogenic alterations in 152 key genes (including 27 DDR-related genes) were assessed, as was the presence and mechanisms of biallelic loss in BRCA2. Findings: At least one DDR alteration was present in 34.5% (129/375) of patients (including monoallelic alterations). The most frequently altered DDR genes were BRCA2 (19%), ATM (13%), FANCA (5%), CHEK2 (5%) and BRCA1 (3%). Patients with BRCA alterations, especially BRCA2, had significantly worse progression-free survival (PFS) (Hazard ratio (HR) 3.3 [95% CI 1.9–6.0]; Cox regression p < 0.001), overall survival (HR 2.2 [95% CI 1.1–4.5]; Cox regression p = 0.02) and PSA response rates to androgen receptor (AR) pathway inhibitors (32% vs 60%, chi-square p = 0.02). BRCA-deficient tumours were also enriched for alterations within multiple genes including in the AR and PI3K pathways. Zygosity of BRCA2 alterations had no discernible impact on clinical outcomes, with similarly poor PFS for monoallelic vs biallelic loss (median 3.9 months vs 3.4 months vs copy neutral 9.8 months). Interpretation: These data emphasise that the BRCA genes, in particular BRCA2, are key prognostic biomarkers in mCRPC. The clinical utility of BRCA2 as a marker of poor outcomes may, at least in cfDNA assays, be independent of the zygosity state detected. Enrichment of actionable genomic alterations in cfDNA from BRCA-deficient mCRPC may support rational co-targeting strategies in future clinical trials. Funding: Several funding sources have supported this study. A full list is provided in the Acknowledgments. No funding was received from Predicine, Inc. during the conduct of the study

    Combined impact of lipidomic and genetic aberrations on clinical outcomes in metastatic castration-resistant prostate cancer

    No full text
    Background: Both changes in circulating lipids represented by a validated poor prognostic 3-lipid signature (3LS) and somatic tumour genetic aberrations are individually associated with worse clinical outcomes in men with metastatic castration-resistant prostate cancer (mCRPC). A key question is how the lipid environment and the cancer genome are interrelated in order to exploit this therapeutically. We assessed the association between the poor prognostic 3-lipid signature (3LS), somatic genetic aberrations and clinical outcomes in mCRPC. Methods: We performed plasma lipidomic analysis and cell-free DNA (cfDNA) sequencing on 106 men with mCRPC commencing docetaxel, cabazitaxel, abiraterone or enzalutamide (discovery cohort) and 94 men with mCRPC commencing docetaxel (validation cohort). Differences in lipid levels between men ± somatic genetic aberrations were assessed with t-tests. Associations between the 3LS and genetic aberrations with overall survival (OS) were examined using Kaplan-Meier methods and Cox proportional hazard models. Results: The 3LS was associated with shorter OS in the discovery (hazard ratio [HR] 2.15, 95% confidence interval [CI] 1.4-3.3, p < 0.001) and validation cohorts (HR 2.32, 95% CI 1.59–3.38, p < 0.001). Elevated plasma sphingolipids were associated with AR, TP53, RB1 and PI3K aberrations (p < 0.05). Men with both the 3LS and aberrations in AR, TP53, RB1 or PI3K had shorter OS than men with neither in both cohorts (p ≀ 0.001). The presence of 3LS and/or genetic aberration was independently associated with shorter OS for men with AR, TP53, RB1 and PI3K aberrations (p < 0.02). Furthermore, aggressive-variant prostate cancer (AVPC), defined as 2 or more aberrations in TP53, RB1 and/or PTEN, was associated with elevated sphingolipids. The combination of AVPC and 3LS predicted for a median survival of ~12 months. The relatively small sample size of the cohorts limits clinical applicability and warrants future studies. Conclusions: Elevated circulating sphingolipids were associated with AR, TP53, RB1, PI3K and AVPC aberrations in mCRPC, and the combination of lipid and genetic abnormalities conferred a worse prognosis. These findings suggest that certain genotypes in mCRPC may benefit from metabolic therapies.</p
    corecore