2,292 research outputs found

    Electron capture rates in a plasma

    Full text link
    A new general expression is derived for nuclear electron capture rates within dense plasmas. Its qualitative nature leads us to question some widely accepted assumptions about how to calculate the effects of the plasma on the rates. A perturbative evaluation, though not directly applicable to the strongly interacting case, appears to bear out these suspicions.Comment: 9 page

    Dynamics of rapidly rotating Bose-Einstein condensates in a harmonic plus quartic trap

    Full text link
    A two-dimensional rapidly rotating Bose-Einstein condensate in a harmonic plus quartic trap is expected to have unusual vortex states that do not occur in a pure harmonic trap. At a critical rotation speed Ωh\Omega_h, a central hole appears in the condensate, and at some faster rotation speed Ωg\Omega_g, the system undergoes a transition to a giant vortex state with pure irrotational flow. Using a time-dependent variational analysis, we study the behavior of an annular condensate with a single concentric ring of vortices. The transition to a giant vortex state is investigated by comparing the energy of the two equilibrium states (the ring of vortices and the giant vortex) and also by studying the dynamical stability of small excitation modes of the ring of vortices.Comment: 12pages, 4figure

    Energy and Vorticity in Fast Rotating Bose-Einstein Condensates

    Full text link
    We study a rapidly rotating Bose-Einstein condensate confined to a finite trap in the framework of two-dimensional Gross-Pitaevskii theory in the strong coupling (Thomas-Fermi) limit. Denoting the coupling parameter by 1/\eps^2 and the rotational velocity by Ω\Omega, we evaluate exactly the next to leading order contribution to the ground state energy in the parameter regime |\log\eps|\ll \Omega\ll 1/(\eps^2|\log\eps|) with \eps\to 0. While the TF energy includes only the contribution of the centrifugal forces the next order corresponds to a lattice of vortices whose density is proportional to the rotational velocity.Comment: 19 pages, LaTeX; typos corrected, clarifying remarks added, some rearrangements in the tex

    An efficient method for the Quantum Monte Carlo evaluation of the static density-response function of a many-electron system

    Get PDF
    In a recent Letter we introduced Hellmann-Feynman operator sampling in diffusion Monte Carlo calculations. Here we derive, by evaluating the second derivative of the total energy, an efficient method for the calculation of the static density-response function of a many-electron system. Our analysis of the effect of the nodes suggests that correlation is described correctly and we find that the effect of the nodes can be dealt with

    Random-phase-approximation-based correlation energy functionals: Benchmark results for atoms

    Full text link
    The random phase approximation (RPA) for the correlation energy functional of density functional theory has recently attracted renewed interest. Formulated in terms of the Kohn-Sham (KS) orbitals and eigenvalues, it promises to resolve some of the fundamental limitations of the local density and generalized gradient approximations, as for instance their inability to account for dispersion forces. First results for atoms, however, indicate that the RPA overestimates correlation effects as much as the orbital-dependent functional obtained by a second order perturbation expansion on the basis of the KS Hamiltonian. In this contribution, three simple extensions of the RPA are examined, (a) its augmentation by an LDA for short-range correlation, (b) its combination with the second order exchange term, and (c) its combination with a partial resummation of the perturbation series including the second order exchange. It is found that the ground state and correlation energies as well as the ionization potentials resulting from the extensions (a) and (c) for closed sub-shell atoms are clearly superior to those obtained with the unmodified RPA. Quite some effort is made to ensure highly converged RPA data, so that the results may serve as benchmark data. The numerical techniques developed in this context, in particular for the inherent frequency integration, should also be useful for applications of RPA-type functionals to more complex systems.Comment: 11 pages, 7 figure

    Two-fluid model for a rotating trapped Fermi gas in the BCS phase

    Full text link
    We investigate the dynamical properties of a superfluid gas of trapped fermionic atoms in the BCS phase. As a simple example we consider the reaction of the gas to a slow rotation of the trap. It is shown that the currents generated by the rotation can be understood within a two-fluid model similar to the one used in the theory of superconductors, but with a position dependent ratio of normal and superfluid densities. The rather general result of this paper is that already at very low temperatures, far below the critical one, an important normal-fluid component appears in the outer regions of the gas. This renders the experimental observation of superfluidity effects more difficult and indicates that reliable theoretical predictions concerning other dynamical properties, like the frequencies of collective modes, can only be made by taking into account temperature effects.Comment: 6 pages, 4 figure

    Kelvin mode of a vortex in a nonuniform Bose-Einstein condensate

    Full text link
    In a uniform fluid, a quantized vortex line with circulation h/M can support long-wavelength helical traveling waves proportional to e^{i(kz-\omega_k t)} with the well-known Kelvin dispersion relation \omega_k \approx (\hbar k^2/2M) \ln(1/|k|\xi), where \xi is the vortex-core radius. This result is extended to include the effect of a nonuniform harmonic trap potential, using a quantum generalization of the Biot-Savart law that determines the local velocity V of each element of the vortex line. The normal-mode eigenfunctions form an orthogonal Sturm-Liouville set. Although the line's curvature dominates the dynamics, the transverse and axial trapping potential also affect the normal modes of a straight vortex on the symmetry axis of an axisymmetric Thomas-Fermi condensate. The leading effect of the nonuniform condensate density is to increase the amplitude along the axis away from the trap center. Near the ends, however, a boundary layer forms to satisfy the natural Sturm-Liouville boundary conditions. For a given applied frequency, the next-order correction renormalizes the local wavenumber k(z) upward near the trap center, and k(z) then increases still more toward the ends.Comment: 9 pages, 1 figur

    The QCD string tension curve, the ferromagnetic magnetization, and the quark-antiquark confining potential at finite Temperature

    Full text link
    We study the string tension as a function of temperature, fitting the SU(3) lattice QCD finite temperature free energy potentials computed by the Bielefeld group. We compare the string tension points with order parameter curves of ferromagnets, superconductors or string models, all related to confinement. We also compare the SU(3) string tension with the one of SU(2) Lattice QCD. With the curve providing the best fit to the finite temperature string tensions, the spontaneous magnetization curve, we then show how to include finite temperature, in the state of the art confining and chiral invariant quark models.Comment: 9 pages, 12 figure

    Mechanism of d_{x^2-y^2}-wave superconductivity based on doped hole induced spin texture in high T_c cuprates

    Get PDF
    A mechanism of d_{x^2-y^2}-wave superconductivity is proposed for the high-T_c cuprates based on a spin texture with non-zero topological density induced by doped holes through Zhang-Rice singlet formation. The pairing interaction arises from the magnetic Lorentz force like interaction between the holes and the spin textures. The stability of the pairing state against the vortex-vortex interaction and the Coulomb repulsion is examined. The mechanism suggests appearance of a p-wave pairing component by introducing anisotropy in the CuO_2 plane.Comment: 9 pages, 3 figures; added references, corrected minor error

    Anomalous Pinning Fields in Helical Magnets: Screening of the Quasiparticle Interaction

    Full text link
    The spin-orbit interaction strength g_so in helical magnets determines both the pitch wave number q and the critical field H_c1 where the helix aligns with an external magnetic field. Within a standard Landau-Ginzburg-Wilson (LGW) theory, a determination of g_so in MnSi and FeGe from these two observables yields values that differ by a factor of 20. This discrepancy is remedied by considering the fermionic theory underlying the LGW theory, and in particular the effects of screening on the effective electron-electron interaction that results from an exchange of helical fluctuations.Comment: 4pp, 2 fig
    corecore