23 research outputs found

    Multi-Scale Modeling of HIV Infection in vitro and APOBEC3G-Based Anti-Retroviral Therapy

    Get PDF
    The human APOBEC3G is an innate restriction factor that, in the absence of Vif, restricts HIV-1 replication by inducing excessive deamination of cytidine residues in nascent reverse transcripts and inhibiting reverse transcription and integration. To shed light on impact of A3G-Vif interactions on HIV replication, we developed a multi-scale computational system consisting of intracellular (single-cell), cellular and extracellular (multicellular) events by using ordinary differential equations. The single-cell model describes molecular-level events within individual cells (such as production and degradation of host and viral proteins, and assembly and release of new virions), whereas the multicellular model describes the viral dynamics and multiple cycles of infection within a population of cells. We estimated the model parameters either directly from previously published experimental data or by running simulations to find the optimum values. We validated our integrated model by reproducing the results of in vitro T cell culture experiments. Crucially, both downstream effects of A3G (hypermutation and reduction of viral burst size) were necessary to replicate the experimental results in silico. We also used the model to study anti-HIV capability of several possible therapeutic strategies including: an antibody to Vif; upregulation of A3G; and mutated forms of A3G. According to our simulations, A3G with a mutated Vif binding site is predicted to be significantly more effective than other molecules at the same dose. Ultimately, we performed sensitivity analysis to identify important model parameters. The results showed that the timing of particle formation and virus release had the highest impacts on HIV replication. The model also predicted that the degradation of A3G by Vif is not a crucial step in HIV pathogenesis

    APOBEC3G-Augmented Stem Cell Therapy to Modulate HIV Replication: A Computational Study

    Get PDF
    PMC3661658The interplay between the innate immune system restriction factor APOBEC3G and the HIV protein Vif is a key host-retrovirus interaction. APOBEC3G can counteract HIV infection in at least two ways: by inducing lethal mutations on the viral cDNA; and by blocking steps in reverse transcription and viral integration into the host genome. HIV-Vif blocks these antiviral functions of APOBEC3G by impeding its encapsulation. Nonetheless, it has been shown that overexpression of APOBEC3G, or interfering with APOBEC3G-Vif binding, can efficiently block in vitro HIV replication. Some clinical studies have also suggested that high levels of APOBEC3G expression in HIV patients are correlated with increased CD4+ T cell count and low levels of viral load; however, other studies have reported contradictory results and challenged this observation. Stem cell therapy to replace a patient's immune cells with cells that are more HIV-resistant is a promising approach. Pre-implantation gene transfection of these stem cells can augment the HIV-resistance of progeny CD4+ T cells. As a protein, APOBEC3G has the advantage that it can be genetically encoded, while small molecules cannot. We have developed a mathematical model to quantitatively study the effects on in vivo HIV replication of therapeutic delivery of CD34+ stem cells transfected to overexpress APOBEC3G. Our model suggests that stem cell therapy resulting in a high fraction of APOBEC3G-overexpressing CD4+ T cells can effectively inhibit in vivo HIV replication. We extended our model to simulate the combination of APOBEC3G therapy with other biological activities, to estimate the likelihood of improved outcomes.JH Libraries Open Access Fun
    corecore