267 research outputs found

    Interpretation of UV Absorption Lines in SN1006

    Get PDF
    We present a theoretical interpretation of the broad silicon and iron UV absorption features observed with the Hubble Space Telescope in the spectrum of the Schweizer-Middleditch star behind the remnant of Supernova 1006. These features are caused by supernova ejecta in SN1006. We propose that the redshifted SiII2 1260 A feature consists of both unshocked and shocked SiII. The sharp red edge of the line at 7070 km/s indicates the position of the reverse shock, while its Gaussian blue edge reveals shocked Si with a mean velocity of 5050 km/s and a dispersion of 1240 km/s, implying a reverse shock velocity of 2860 km/s. The measured velocities satisfy the energy jump condition for a strong shock, provided that all the shock energy goes into ions, with little or no collisionless heating of electrons. The line profiles of the SiIII and SiIV absorption features indicate that they arise mostly from shocked Si. The total mass of shocked and unshocked Si inferred from the SiII, SiIII and SiIV profiles is M_Si = 0.25 \pm 0.01 Msun on the assumption of spherical symmetry. Unshocked Si extends upwards from 5600 km/s. Although there appears to be some Fe mixed with the Si at lower velocities < 7070 km/s, the absence of FeII absorption with the same profile as the shocked SiII suggests little Fe mixed with Si at higher (before being shocked) velocities. The column density of shocked SiII is close to that expected for SiII undergoing steady state collisional ionization behind the reverse shock, provided that the electron to SiII ratio is low, from which we infer that most of the shocked Si is likely to be of a fairly high degree of purity, unmixed with other elements. We propose that the ambient interstellar density on the far side of SN1006 is anomalously low compared to the density around the rest of the remnant. ThisComment: 24 pages, with 8 figures included. Accepted for publication in the Astrophysical Journa

    The Expansion Center and Dynamical Age of the Galactic Supernova Remnant Cassiopeia A

    Get PDF
    We present proper motions for 21 bright main shell and 17 faint, higher-velocity, outer ejecta knots in the Cas A supernova remnant and use them to derive new estimates for the remnant's expansion center and age. Our study included 1951 - 1976 Palomar 5 m prime focus plates, 1988 - 1999 CCD images from the KPNO 4 m and MDM 2.4 m telescopes, and 1999 HST WFPC2 images. Measurable positions covered a 23 to 41 yr time span for most knots, with a few outer knots followed for almost 48 yr. We derive an expansion center of alpha = 23h 23m 27s.77 +- 0s.05, delta = 58d 48' 49".4 +- 0".4 (ICRS), with little difference between centers derived using outer or main shell knots. This position is 3.0 arcsec due north of that estimated by van den Bergh and Kamper (1983). It also lies 6.6 +- 1.5 arcsec almost due north (PA = 354 deg) of the remnant's recently-detected central X-ray point source, implying a transverse velocity for the X-ray point source of about 330 km/s at a distance of 3.4 kpc. Using the knots which lie out ahead of the remnant's forward blast wave, we estimate a knot convergent date of A.D. 1671.3 +- 0.9, assuming no deceleration. However, a deceleration of just approximately 1.6 km/(s yr) over a 300 yr time span would produce an explosion date A.D. 1680, consistent with the suspected sighting of the Cas A supernova by J. Flamsteed.Comment: Astron. Journal in press, sched. July 2001. AASTex5, 17 pages, 2 jpeg greyscale figures, 3 postscript figure

    A Catalog of Outer Ejecta Knots in the Cassiopeia A Supernova Remnant

    Get PDF
    Hubble Space Telescope images of the core-collapse supernova remnant Cassiopeia A are used to identify high-velocity knots of ejecta located outside the remnant's main emission shell of expanding debris. These ejecta fragments are found near or ahead of the remnant's forward shock front and mostly lie from 12000 to 30000 in radial distance from the remnant's center of expansion. Filter flux ratios when correlated with published spectra show that these knots can be divided into three emission classes: (1) knots dominated by [N II] lambda lambda 6548, 6583 emissions, ( 2) knots dominated by [O II] kk7319, 7330 emissions, and (3) knots displaying filter flux ratios suggestive of [ S II], [ O II], and [Ar III] lambda 7135 emission line strengths similar to the "fast-moving knots'' (FMKs) found in the remnant's bright main shell. Of 1825 knots identified, 444 are strong [N II] emission knots, 192 are strong [O II] emission knots, and 1189 are FMK-like knots. In terms of location around the remnant, 972, 207, and 646 knots are found in the remnant's northeast jet, southwest jet, and non-jet regions, respectively. Assuming a distance of 3.4 kpc, derived knot transverse velocities based on proper motion measurements spanning a 9 month interval indicate maximum transverse expansion velocities for these three knot classes of 14,500, 13,500, and 11,500 km s(-1), respectively. We present a catalog of these outlying ejecta clumps comprising finding charts, epoch 2004.2 knot positions, proper motions, photometric filter fluxes, and estimated knot emission type, along with cross-references to previous knot identifications and data. This compilation represents a nearly tenfold increase in the number of outlying, high-velocity ejecta knots identified around the Cassiopeia A remnant

    Near-Infrared Spectroscopy of the Cassiopeia A and Kepler Supernova Remnants

    Get PDF
    Near-infrared spectra (0.95 - 2.4 micron) of the Cassiopeia A and Kepler supernova remnants (SNRs) are presented. Low-dispersion (R = 700) spectra were obtained for five bright fast-moving ejecta knots (FMKs) at two locations on the main shell and for three bright circumstellar knots (QSFs) near the southwest rim of Cas A. The main shell FMKs in Cas A exhibit a sparse near-infrared spectrum dominated by [S II] 1.03 micron emission with a handful of other, fainter emission lines. Among these are two high-ionization silicon lines, [Si VI] 1.96 micron and [Si X] 1.43 micron, which have been detected in AGNs and novae but never before in a supernova remnant. The near-infrared spectra of circumstellar QSFs in Cas A show a much richer spectrum, with strong He I 1.083 micron emission and over a dozen bright [Fe II] lines. Observed [Fe II] line ratios indicate electron densities of 5 - 9 * 10^4 cm^-3 in the QSFs. The Cas A QSF data are quite similar to the observed spectrum of a bright circumstellar knot along the northwest rim of the Kepler SNR, which also shows strong He I and [Fe II] emission with a measured electron density of 2.5 - 3 * 10^4 cm^-3. Finally, we present J- and K-band images of Cas A. The K-band image shows faint diffuse emission which has no optical or mid-infrared counterpart but is morphologically similar to radio continuum maps and may be infrared synchrotron radiation

    Chandra Observations of the Luminous, O-Rich SNR in the Irregular Galaxy NGC 4449

    Get PDF
    An analysis of a 29 ksec Chandra ACIS-S observation of the young, Cassiopeia-A like supernova remnant in the irregular galaxy NGC 4449 is presented. The observed 0.5-2.1 keV spectrum reveals the likely presence of several emission lines including O VIII at 0.65 keV and 0.77 keV, Ne X at 1.05 keV, Mg XI at 1.5 keV, and Si XIII at 1.85 keV. From the observed spectrum, we derive an N_H = 10^21 cm^-2 and an X-ray temperature of T = 9 * 10^6 K. A non-equilibrium ionization fit to the spectrum suggests an overabundance of oxygen around 20 times solar, consistent with the remnant's UV and optical emission-line properties. We discuss tht remnant's approximate X-ray derived elemental abundances and compare its X-ray spectrum and luminosity to other oxygen-rich remnants

    Late-Time Optical and UV Spectra of SN 1979C and SN 1980K

    Get PDF
    A low-dispersion Keck I spectrum of SN 1980K taken in August 1995 (t = 14.8 yr after explosion) and a November 1997 MDM spectrum (t = 17.0 yr) show broad 5500 km s^{-1} emission lines of H\alpha, [O I] 6300,6364 A, and [O II] 7319,7330 A. Weaker but similarly broad lines detected include [Fe II] 7155 A, [S II] 4068,4072 A, and a blend of [Fe II] lines at 5050--5400 A. The presence of strong [S II] 4068,4072 A emission but a lack of [S II] 6716,6731 A emission suggests electron densities of 10^{5-6} cm^{-3}. From the 1997 spectra, we estimate an H\alpha flux of 1.3 \pm 0.2 \times 10^{-15} erg cm^{-2} s^{-1} indicating a 25% decline from 1987--1992 levels during the period 1994 to 1997, possibly related to a reported decrease in its nonthermal radio emission.Comment: 21 pages, 8 figures, submitted to the Astronomical Journa

    The Crab Nebula\u27s Dynamical Age as Measured from its Northern Filamentary Jet

    Get PDF
    We present a deep [O III] 4959,5007 image of the northern filamentary jet in the Crab Nebula taken with the 8.2m Subaru telescope. Using this image and an image taken with the KPNO 4m in 1988 (Fesen & Staker 1993), we have computed proper motions for 35 locations in the jet. The results suggest that when compared to the main body of the remnant, the jet experienced less outward acceleration from the central pulsar\u27s rapidly expanding synchrotron nebula. The jet\u27s apparent expansion rate yields an undecelerated explosion date for the Crab Nebula of 1055 plus or minus 24 C.E., a date much closer to the appearance of the historic 1054 C.E. guest star than the 1120 - 1140 C.E. dates estimated in previous studies using filaments located within the remnant\u27s main nebula. Our proper motion measurements suggest the jet likely formed during the 1054 supernova explosion and represents the remnant\u27s highest velocity knots possibly associated with a suspected N-S bipolar outflow from the supernova explosion

    Progressive Redshifts in the Late-Time Spectra of Type IA Supernovae

    Get PDF
    We examine the evolution of late-time, optical nebular features of Type Ia supernovae (SNe Ia) using a sample consisting of 160 spectra of 27 normal SNe Ia taken from the literature as well as unpublished spectra of SN 2008Q and ASASSN-14lp. Particular attention was given to nebular features between 4000-6000 A in terms of temporal changes in width and central wavelength. Analysis of the prominent late-time 4700 A feature shows a progressive central wavelength shift from ~4600 A to longer wavelengths out to at least day +300 for our entire sample. We find no evidence for the feature\u27s red-ward shift slowing or halting at an [Fe III] blend centroid of 4701 A as has been proposed. The width of the feature also steadily increases with a FWHM ~170 A at day +100 growing to 200 A or more by day +350. Two weaker adjacent features around 4850 and 5000 A exhibit very similar red shifts to that of the 4700 A feature but show no change in width until very late times. We discuss possible causes for the observed red-ward shifting of these late-time optical features including contribution from [Co II] emission at early nebular epochs and the emergence of additional features at later times. We conclude that the ubiquitous red shift of these common late-time, nebular SN Ia spectral features is not mainly due to a decrease in a blueshift of forbidden Fe lines but the result, in part, of decreasing velocity and/or optical depth of permitted Fe lines
    • 

    corecore