50 research outputs found

    Elastic Light Scattering Measurements of Hemoglobin Oligomers

    Get PDF

    The Physical Foundation of Vasoocclusion in Sickle Cell Disease

    Get PDF
    AbstractThe pathology of sickle cell disease arises from the occlusion of small blood vessels because of polymerization of the sickle hemoglobin within the red cells. We present measurements using a microfluidic method we have developed to determine the pressure required to eject individual red cells from a capillary-sized channel after the cell has sickled. We find that the maximum pressure is only ∼100 Pa, much smaller than typically found in the microcirculation. This explains why experiments using animal models have not observed occlusion beginning in capillaries. The magnitude of the pressure and its dependence on intracellular concentration are both well described as consequences of sickle hemoglobin polymerization acting as a Brownian ratchet. Given the recently determined stiffness of sickle hemoglobin gels, the observed obstruction seen in sickle cell disease as mediated by adherent cells can now be rationalized, and surprisingly suggests a window of maximum vulnerability during circulation of sickle cells

    Allorecognition in the Tasmanian Devil (Sarcophilus harrisii), an Endangered Marsupial Species with Limited Genetic Diversity

    Get PDF
    Tasmanian devils (Sarcophilus harrisii) are on the verge of extinction due to a transmissible cancer, devil facial tumour disease (DFTD). This tumour is an allograft that is transmitted between individuals without immune recognition of the tumour cells. The mechanism to explain this lack of immune recognition and acceptance is not well understood. It has been hypothesized that lack of genetic diversity at the Major Histocompatibility Complex (MHC) allowed the tumour cells to grow in genetically similar hosts without evoking an immune response to alloantigens. We conducted mixed lymphocyte reactions and skin grafts to measure functional MHC diversity in the Tasmanian devil population. The limited MHC diversity was sufficient to produce measurable mixed lymphocyte reactions. There was a wide range of responses, from low or no reaction to relatively strong responses. The highest responses occurred when lymphocytes from devils from the east of Tasmania were mixed with lymphocytes from devils from the west of Tasmania. All of the five successful skin allografts were rejected within 14 days after surgery, even though little or no MHC I and II mismatches were found. Extensive T-cell infiltration characterised the immune rejection. We conclude that Tasmanian devils are capable of allogeneic rejection. Consequently, a lack of functional allorecognition mechanisms in the devil population does not explain the transmission of a contagious cancer

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    Homogeneous Nucleation with Parallel Pathways

    Get PDF

    Heterogeneous nucleation and crowding in sickle hemoglobin: an analytic approach.

    No full text
    Sickle hemoglobin nucleation occurs in solution as a homogeneous process or on existing polymers in a heterogeneous process. We have developed an analytic formulation to describe the solution crowding and large nonideality that affects the heterogeneous nucleation of sickle hemoglobin by using convex particle theory. The formulation successfully fits the concentration and temperature dependence of the heterogeneous nucleation process over 14 orders of magnitude. Unlike previous approaches, however, the new formulation can also accurately describe the effects of adding nonpolymerizing agents to the solution. Without additional adjustable parameters, the model now describes the data of M. Ivanova, R. Jasuja, S. Kwong, R. W. Briehl, and F. A. Ferrone, (Biophys. J. 2000, 79:1016-1022), in which up to 50% of the sickle hemoglobin is substituted by cross-linked hemoglobin A, which does not polymerize, and which substitution causes the rates to decrease by 10(5). The success of this approach provides insight into the polymerization process: from the size-dependence of the contact energy deduced here, it also appears that various contacts of unknown origin are energetically significant in the heterogeneous nucleation process
    corecore