107 research outputs found

    DO CULTURAL RESOURCE LAWS & FEDERAL REGULATIONS ADD CONSTRAINTS TO NATIVE AMERICAN TRUST LAND MANAGEMENT AND TRUST LAND DEVELOPMENT OUTCOMES?

    Get PDF
    This research was conducted to evaluate the way cultural resource management laws and federal regulations impact Native American trust land management. Tribal trust land is land that has been set aside for the exclusive use and benefit of a tribe but is owned by the United States. Trust lands were once the aboriginal lands, exclusively controlled and managed by individual tribes through traditional land management practices. Traditional land management is a part of cultural and heritage resource management because the resources promoted by these practices are integral to traditional cultural practices that are repetitious. Current regulatory laws have a negative impact on Native American people by restricting their ability to manage tribal trust land with traditional land management tools, like fire. In addition, these laws cause time delays and economic losses to tribes who are in the process of development for economic purposes. Federal administrative agencies, such as the Bureau of Indian Affairs (BIA), were established to administer Native American programs as part of the executive branch of government. The BIA is responsible for regulating compliance with federal laws on trust lands. Native American Tribes and their traditional practitioners are challenged by overlapping cultural resource compliance laws and federal regulations. Tribes express that there are social and economic impacts to the people who rely on the land for purposes of religious and economic well-bein

    Intraclonal mating occurs during tsetse transmission of Trypanosoma brucei

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mating in <it>Trypanosoma brucei </it>is a non-obligatory event, triggered by the co-occurrence of different strains in the salivary glands of the vector. Recombinants that result from intra- rather than interclonal mating have been detected, but only in crosses of two different trypanosome strains. This has led to the hypothesis that when trypanosomes recognize a different strain, they release a diffusible factor or pheromone that triggers mating in any cell in the vicinity whether it is of the same or a different strain. This idea assumes that the trypanosome can recognize self and non-self, although there is as yet no evidence for the existence of mating types in <it>T. brucei</it>.</p> <p>Results</p> <p>We investigated intraclonal mating in <it>T. b. brucei </it>by crossing red and green fluorescent lines of a single strain, so that recombinant progeny can be detected in the fly by yellow fluorescence. For strain 1738, seven flies had both red and green trypanosomes in the salivary glands and, in three, yellow trypanosomes were also observed, although they could not be recovered for subsequent analysis. Nonetheless, both red and non-fluorescent clones from these flies had recombinant genotypes as judged by microsatellite and karyotype analyses, and some also had raised DNA contents, suggesting recombination or genome duplication. Strain J10 produced similar results indicative of intraclonal mating. In contrast, trypanosome clones recovered from other flies showed that genotypes can be transmitted with fidelity. When a yellow hybrid clone expressing both red and green fluorescent protein genes was transmitted, the salivary glands contained a mixture of fluorescent-coloured trypanosomes, but only yellow and red clones were recovered. While loss of the <it>GFP </it>gene in the red clones could have resulted from gene conversion, some of these clones showed loss of heterozygosity and raised DNA contents as in the other single strain transmissions. Our observations suggest that many recombinants are non-viable after intraclonal mating.</p> <p>Conclusion</p> <p>We have demonstrated intraclonal mating during fly transmission of <it>T. b. brucei</it>, contrary to previous findings that recombination occurs only when another strain is present. It is thus no longer possible to assume that <it>T. b. brucei </it>remains genetically unaltered after fly transmission.</p

    The use of yellow fluorescent hybrids to indicate mating in Trypanosoma brucei

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Trypanosoma brucei </it>undergoes genetic exchange in its insect vector, the tsetse fly, by an unknown mechanism. The difficulties of working with this experimental system of genetic exchange have hampered investigation, particularly because the trypanosome life cycle stages involved cannot be cultured in vitro and therefore must be examined in the insect. Searching for small numbers of hybrid trypanosomes directly in the fly has become possible through the incorporation of fluorescent reporter genes, and we have previously carried out a successful cross using a reporter-repressor strategy. However, we could not be certain that all fluorescent trypanosomes observed in that cross were hybrids, due to mutations of the repressor leading to spontaneous fluorescence, and we have therefore developed an alternative strategy.</p> <p>Results</p> <p>To visualize the production of hybrids in the fly, parental trypanosome clones were transfected with a gene encoding Green Fluorescent Protein (GFP) or Red Fluorescent Protein (RFP). Co-infection of flies with red and green fluorescent parental trypanosomes produced yellow fluorescent hybrids, which were easily visualized in the fly salivary glands. Yellow trypanosomes were not seen in midgut or proventricular samples and first appeared in the glands as epimastigotes as early as 13 days after fly infection. Cloned progeny originating from individual salivary glands had yellow, red, green or no fluorescence and were confirmed as hybrids by microsatellite, molecular karyotype and kinetoplast (mitochondrial) DNA analyses. Hybrid clones showed biparental inheritance of both nuclear and kinetoplast genomes. While segregation and reassortment of the reporter genes and microsatellite alleles were consistent with Mendelian inheritance, flow cytometry measurement of DNA content revealed both diploid and polyploid trypanosomes among the hybrid progeny clones.</p> <p>Conclusion</p> <p>The strategy of using production of yellow hybrids to indicate mating in trypanosomes provides a robust and unequivocal system for analysis of genetic exchange. Mating occurred with high frequency in these experimental crosses, limited only by the ability of both parental trypanosomes to invade the salivary glands. Yellow hybrids appeared as soon as trypanosomes invaded the salivary glands, implicating the short, unattached epimastigote as the sexual stage. The recovery of diploid, triploid and tetraploid hybrids in these crosses was surprising as genetic markers appeared to have been inherited according to Mendelian rules. As the polyploid hybrids could have been produced from fusion of unreduced gametes, there is no fundamental conflict with a model of genetic exchange involving meiosis.</p

    Genetic recombination between human and animal parasites creates novel strains of human pathogen.

    Get PDF
    Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT

    The Influence of Sex and Fly Species on the Development of Trypanosomes in Tsetse Flies

    Get PDF
    Unlike other dipteran disease vectors, tsetse flies of both sexes feed on blood and transmit pathogenic African trypanosomes. During transmission, Trypanosoma brucei undergoes a complex cycle of proliferation and development inside the tsetse vector, culminating in production of infective forms in the saliva. The insect manifests robust immune defences throughout the alimentary tract, which eliminate many trypanosome infections. Previous work has shown that fly sex influences susceptibility to trypanosome infection as males show higher rates of salivary gland (SG) infection with T. brucei than females. To investigate sex-linked differences in the progression of infection, we compared midgut (MG), proventriculus, foregut and SG infections in male and female Glossina morsitans morsitans. Initially, infections developed in the same way in both sexes: no difference was observed in numbers of MG or proventriculus infections, or in the number and type of developmental forms produced. Female flies tended to produce foregut migratory forms later than males, but this had no detectable impact on the number of SG infections. The sex difference was not apparent until the final stage of SG invasion and colonisation, showing that the SG environment differs between male and female flies. Comparison of G. m. morsitans with G. pallidipes showed a similar, though less pronounced, sex difference in susceptibility, but additionally revealed very different levels of trypanosome resistance in the MG and SG. While G. pallidipes was more refractory to MG infection, a very high proportion of MG infections led to SG infection in both sexes. It appears that the two fly species use different strategies to block trypanosome infection: G. pallidipes heavily defends against initial establishment in the MG, while G. m. morsitans has additional measures to prevent trypanosomes colonising the SG, particularly in female flies. We conclude that the tsetse-trypanosome interface works differently in G. m. morsitans and G. pallidipes

    Nitrogen Level Changes the Interactions between a Native (Scirpus triqueter) and an Exotic Species (Spartina anglica) in Coastal China

    Get PDF
    The exotic species Spartina anglica, introduced from Europe in 1963, has been experiencing a decline in the past decade in coastal China, but the reasons for the decline are still not clear. It is hypothesized that competition with the native species Scirpus triqueter may have played an important role in the decline due to niche overlap in the field. We measured biomass, leaf number and area, asexual reproduction and relative neighborhood effect (RNE) of the two species in both monoculture and mixture under three nitrogen levels (control, low and high). S. anglica showed significantly lower biomass accumulation, leaf number and asexual reproduction in mixture than in monoculture. The inter- and intra-specific RNE of S. anglica were all positive, and the inter-specific RNE was significantly higher than the intra-specific RNE in the control. For S. triqueter, inter- and intra-specific RNE were negative at the high nitrogen level but positive in the control and at the low nitrogen level. This indicates that S. triqueter exerted an asymmetric competitive advantage over S. anglica in the control and low nitrogen conditions; however, S. anglica facilitated growth of S. triqueter in high nitrogen conditions. Nitrogen level changed the interactions between the two species because S. triqueter better tolerated low nitrogen. Since S. anglica is increasingly confined to upper, more nitrogen-limited marsh areas in coastal China, increased competition from S. triqueter may help explain its decline
    • …
    corecore