7 research outputs found

    Whole Exome Sequencing to Estimate Alloreactivity Potential Between Donors and Recipients in Stem Cell Transplantation

    Full text link
    Whole exome sequencing was performed on HLA-matched stem cell donors and transplant recipients to measure sequence variation contributing to minor histocompatibility antigen differences between the two. A large number of nonsynonymous single nucleotide polymorphisms were identified in each of the nine unique donor-recipient pairs tested. This variation was greater in magnitude in unrelated donors as compared with matched related donors. Knowledge of the magnitude of exome variation between stem cell transplant recipients and donors may allow more accurate titration of immunosuppressive therapy following stem cell transplantation.Comment: 12 pages- main article, 29 pages total, 5 figures, 1 supplementary figur

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Author Correction: The mutational constraint spectrum quantified from variation in 141,456 humans (Nature, (2020), 581, 7809, (434-443), 10.1038/s41586-020-2308-7)

    No full text
    10.1038/s41586-020-03174-8Nature590784

    Author Correction: The mutational constraint spectrum quantified from variation in 141,456 humanS

    No full text
    In this Article, author Marquis P. Vawter was missing from the Genome Aggregation Database Consortium list. They are associated with the affiliation: ‘Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, CA, USA’, and contributed to the generation of the primary data incorporated into the gnomAD resource. In addition, in the legend to Fig. 1, ‘ten’ should have been ‘seven’ in the sentence: “a, Uniform manifold approximation and projection (UMAP)46,47 plot depicting the ancestral diversity of all individuals in gnomAD, using seven principal components.” The original Article has been corrected online

    Author Correction: Transcript expression-aware annotation improves rare variant interpretation

    No full text
    In this Article, author Marquis P. Vawter was missing from the Genome Aggregation Database Consortium list. They are associated with the affiliation: ‘Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, CA, USA’, and contributed to the generation of the primary data incorporated into the gnomAD resource. The original Article has been corrected online

    A genomic mutational constraint map using variation in 76,156 human genomes

    No full text
    corecore