1,736 research outputs found

    Tuning the proximity effect in a superconductor-graphene-superconductor junction

    Full text link
    We have tuned in situ the proximity effect in a single graphene layer coupled to two Pt/Ta superconducting electrodes. An annealing current through the device changed the transmission coefficient of the electrode/graphene interface, increasing the probability of multiple Andreev reflections. Repeated annealing steps improved the contact sufficiently for a Josephson current to be induced in graphene.Comment: Accepted for publication in Phys. Rev.

    Geometrical dependence of decoherence by electronic interactions in a GaAs/GaAlAs square network

    Full text link
    We investigate weak localization in metallic networks etched in a two dimensional electron gas between 25 25\:mK and 750 750\:mK when electron-electron (e-e) interaction is the dominant phase breaking mechanism. We show that, at the highest temperatures, the contributions arising from trajectories that wind around the rings and trajectories that do not are governed by two different length scales. This is achieved by analyzing separately the envelope and the oscillating part of the magnetoconductance. For T≳0.3 T\gtrsim0.3\:K we find \Lphi^\mathrm{env}\propto{T}^{-1/3} for the envelope, and \Lphi^\mathrm{osc}\propto{T}^{-1/2} for the oscillations, in agreement with the prediction for a single ring \cite{LudMir04,TexMon05}. This is the first experimental confirmation of the geometry dependence of decoherence due to e-e interaction.Comment: LaTeX, 5 pages, 4 eps figure

    Mapping wildland-urban interfaces at large scales integrating housing density and vegetation aggregation for fire prevention in the South of France

    Get PDF
    Every year, more than 50,000 wildland fires affect about 500,000 ha of vegetation in southern European countries, particularly in wildland-urban interfaces (WUI). This paper presents a method to characterize and map WUIs at large scales and over large areas for wildland fire prevention in the South of France. Based on the combination of four types of building configuration and three classes of vegetation structure, 12 interface types were classified. Through spatial analysis, fire ignition density and burned area ratio were linked with the different types of WUI. Among WUI types, isolated WUIs with the lowest housing density represent the highest level of fire risk

    On the correlation between fragility and stretching in glassforming liquids

    Full text link
    We study the pressure and temperature dependences of the dielectric relaxation of two molecular glassforming liquids, dibutyl phtalate and m-toluidine. We focus on two characteristics of the slowing down of relaxation, the fragility associated with the temperature dependence and the stretching characterizing the relaxation function. We combine our data with data from the literature to revisit the proposed correlation between these two quantities. We do this in light of constraints that we suggest to put on the search for empirical correlations among properties of glassformers. In particular, argue that a meaningful correlation is to be looked for between stretching and isochoric fragility, as both seem to be constant under isochronic conditions and thereby reflect the intrinsic effect of temperature

    Land cover analysis in wildland-urban interfaces according to wildfire risk: a case study in the South of France

    No full text
    Each year, forest fires destroy about 500,000 ha of vegetation in Europe, predominantly in the Mediterranean region. Many large fires are linked to the land transformations that have taken place in the Mediterranean region in recent decades that have increased the risk of forest fires. On the one hand, agricultural fallows and orchards are slowly being colonized by vegetation, and on the other hand, the forest is not sufficiently used, both of which result in increased accumulation of fuel. In addition, urbanization combined with forest extension results in new spatial configurations called wildland-urban interfaces (WUI). WUI are commonly defined as areas where urban areas meet and interact with rural lands, wildland vegetation and forests. Spatial analyses were performed using a WUI typology based on two intertwined elements, the spatial organization of homes and the structure of fuel vegetation. The organisation of the land cover in terms of representativeness, complexity or road density was evaluated for each type of WUI. Results showed that there were significant differences between the types of WUI in the study area. Three indicators (i) fire ignition density, derived from the distribution of fire ignition points, (ii) wildfire density, derived from the distribution of wildfire area and (iii) burned area ratio, derived from the proportion of the burned area to the total study area were then compared with each type of WUI. Assuming that the three indicators correspond to important aspects of fire risk, we showed that, at least in the south of France, WUI are at high risk of wildfire, and that of the different types of wildland-urban interfaces, isolated and scattered WUI were the most at risk. Their main land cover characteristics, i.e. low housing and road densities but a high density of country roads, and the availability of burnable vegetation such as forested stands and shrubland (garrigue) explain the high fire risk. Improving our knowledge of relationships between WUI environments and fire risk should increase the efficiency of wildfire prevention: to this end, suitable prevention actions and communication campaigns targeting the types of WUI at the highest risk are recommended

    The consequence of excess configurational entropy on fragility: the case of a polymer/oligomer blend

    Full text link
    By taking advantage of the molecular weight dependence of the glass transition of polymers and their ability to form perfectly miscible blends, we propose a way to modify the fragility of a system, from fragile to strong, keeping the same glass properties, i.e. vibrational density of states, mean-square displacement and local structure. Both slow and fast dynamics are investigated by calorimetry and neutron scattering in an athermal polystyrene/oligomer blend, and compared to those of a pure 17-mer polystyrene considered to be a reference, of same Tg. Whereas the blend and the pure 17-mer have the same heat capacity in the glass and in the liquid, their fragilities differ strongly. This difference in fragility is related to an extra configurational entropy created by the mixing process and acting at a scale much larger than the interchain distance, without affecting the fast dynamics and the structure of the glass

    Colloids in light fields: particle dynamics in random and periodic energy landscapes

    Full text link
    The dynamics of colloidal particles in potential energy landscapes have mainly been investigated theoretically. In contrast, here we discuss the experimental realization of potential energy landscapes with the help of light fields and the observation of the particle dynamics by video microscopy. The experimentally observed dynamics in periodic and random potentials are compared to simulation and theoretical results in terms of, e.g. the mean-squared displacement, the time-dependent diffusion coefficient or the non-Gaussian parameter. The dynamics are initially diffusive followed by intermediate subdiffusive behaviour which again becomes diffusive at long times. How pronounced and extended the different regimes are, depends on the specific conditions, in particular the shape of the potential as well as its roughness or amplitude but also the particle concentration. Here we focus on dilute systems, but the dynamics of interacting systems in external potentials, and thus the interplay between particle-particle and particle-potential interactions, is also mentioned briefly. Furthermore, the observed dynamics of dilute systems resemble the dynamics of concentrated systems close to their glass transition, with which it is compared. The effect of certain potential energy landscapes on the dynamics of individual particles appears similar to the effect of interparticle interactions in the absence of an external potential

    Proximity DC squids in the long junction limit

    Full text link
    We report the design and measurement of Superconducting/normal/superconducting (SNS) proximity DC squids in the long junction limit, i.e. superconducting loops interrupted by two normal metal wires roughly a micrometer long. Thanks to the clean interface between the metals, at low temperature a large supercurrent flows through the device. The dc squid-like geometry leads to an almost complete periodic modulation of the critical current through the device by a magnetic flux, with a flux periodicity of a flux quantum h/2e through the SNS loop. In addition, we examine the entire field dependence, notably the low and high field dependence of the maximum switching current. In contrast with the well-known Fraunhoffer-type oscillations typical of short wide junctions, we find a monotonous gaussian extinction of the critical current at high field. As shown in [15], this monotonous dependence is typical of long and narrow diffusive junctions. We also find in some cases a puzzling reentrance at low field. In contrast, the temperature dependence of the critical current is well described by the proximity effect theory, as found by Dubos {\it et al.} [16] on SNS wires in the long junction limit. The switching current distributions and hysteretic IV curves also suggest interesting dynamics of long SNS junctions with an important role played by the diffusion time across the junction.Comment: 12 pages, 16 figure

    Alteration of superconductivity of suspended carbon nanotubes by deposition of organic molecules

    Full text link
    We have altered the superconductivity of a suspended rope of single walled carbon nanotubes, by coating it with organic polymers. Upon coating, the normal state resistance of the rope changes by less than 20 percent. But superconductivity, which on the bare rope shows up as a substantial resistance decrease below 300 mK, is gradualy suppressed. We correlate this to the suppression of radial breathing modes, measured with Raman Spectroscopy on suspended Single and Double-walled carbon nanotubes. This points to the breathing phonon modes as being responsible for superconductivity in carbon nanotubes
    • …
    corecore