667 research outputs found

    UV filters bioaccumulation in fish from Iberian river basins

    Get PDF
    The occurrence of eight organic UV filters (UV-Fs) was assessed in fish from four Iberian river basins. This group of compounds is extensively used in cosmetic products and other industrial goods to avoid the damaging effects of UV radiation, and has been found to be ubiquitous contaminants in the aquatic ecosystem. In particular, fish are considered by the scientific community to be the most feasible organism for contamination monitoring in aquatic ecosystems. Despite that, studies on the bioaccumulation of UV-F are scarce. In this study fish samples from four Iberian river basins under high anthropogenic pressure were analysed by liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Benzophenone-3 (BP3), ethylhexyl methoxycinnamate (EHMC), 4-methylbenzylidene camphor (4MBC) and octocrylene (OC) were the predominant pollutants in the fish samples, with concentrations in the range of ng/g. dry. weight (d.w.). The results indicated that most polluted area corresponded to Guadalquivir River basin, where maximum concentrations were found for EHMC (241.7. ng/g. d.w.). Sediments from this river basin were also analysed. Lower values were observed in relation to fish for OC and EHMC, ranging from below the limits of detection to 23. ng/g. d.w. Accumulation levels of UV-F in the fish were used to calculate biota-sediment accumulation factors (BSAFs). These values were always below 1, in the range of 0.04-0.3, indicating that the target UV-Fs are excreted by fish only to some extent. The fact that the highest concentrations were determined in predators suggests that biomagnification of UV-F may take place along the freshwater food web.This work was funded by the Spanish Ministry of Economy and Competitiveness, through the project SCARCE (Consolider Ingenio 2010 CSD2009-00065). This study has also been financially supported by the EU through the FP7 project GLOBAQUA (Grant agreement No 603629), and by the Generalitat de Catalunya (Consolidated Research Groups “2014 SGR 418—Water and Soil Quality Unit” and 2014 SGR 291—ICRA). It reflects only the author's views. The Community is not liable for any use thatmay be made of the information contained therein. Biotage is acknowledged for the gift of the SPE cartridges.Peer reviewe

    Laboratory-scale and pilot-scale stabilization and solidification (S/S) remediation of soil contaminated with per- and polyfluoroalkyl substances (PFASs)

    Get PDF
    Remediation of soil contaminated with per-and polyfluoroalkyl substances (PFAS) is critical due to the high per-sistence and mobility of these compounds. In this study, stabilization and solidification (S/S) treatment was evaluated at pilot-scale using 6 tons of soil contaminated with PFAS-containing aqueous film-forming foam. At pilot scale, long-term PFAS removal over 6 years of precipitation (simulated using irrigation) in leachate from non-treated contaminated reference soil and S/S-treated soil with 15 % binder and 0.2 % GAC was compared. PFAS removal rate from leachate, corresponding to reduction in leaching potential after 6 years, was 97 % for four dominant PFASs (perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid (PFHxS) and per-fluorooctanesulfonic acid (PFOS)), but low (3%) for short-chain perfluoropentanoic acid (PFPeA). During the pilot scale experiment, PFAS sorption strength (i.e., soil-water partitioning coefficient (Kd)) increased 2to 40-fold for both reference and S/S-treated soil, to much higher levels than in laboratory-scale tests. However, PFAS behavior in pilot scale and laboratory-scale tests was generally well-correlated (p < 0.001), which will help in future S/S recipe optimization. In addition, seven PFASs were tentatively identified using an automated suspect screening approach. Among these, perfluorohexanesulfonamide and 3:2 fluorotelomer alcohol were tentatively identified and the latter had low removal rates from leachate (< 12 %) in S/S treatment

    Multi-residue determination of 10 selected new psychoactive substances in waste water samples by liquid chromatography–tandem mass spectrometry

    Get PDF
    New psychoactive substances (NPSs) have become increasingly popular in recent years. The analysis of these substances in influent wastewater (IWW) can be used to track their use in communities. In addition, an evaluation of the amount of NPSs released to the aquatic environment can be performed through the analysis of effluent wastewater (EWW). This study presents the development, validation and application of an analytical methodology, based on solid phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), for the determination of 10 NPSs in IWW and EWW. Synthetic cannabinoids, cathinones, piperazines and pyrrolidophenones are included among the target analytes. To the authors’ knowledge, it is the first time that eight out of these substances (4’-methylpyrrolidinobutyrophenone (MPPP), a-pyrrolidinopentiophenone (a-PVP), 2-[(1S,3R)-3-hydroxycyclohexyl]-5-(2-methyl-2-octanyl) phenol (CP47,497), (1-naphthyl(1-pentyl-1H-indol-3-yl) methanone (JWH-018), (1-butyl-1H-indol-3-yl)(1-naphthyl) methanone (JWH-073), (4-ethyl-1-naphthyl)(1-pentyl-1H-indol-3-yl) methanone (JWH-210), (4-methyl-1-naphthyl) (1-pentyl-1H-indol-3-yl) methanone (JWH-122) and 2-(2-methoxyphenyl)-1-(1-pentyl-1H-indol-3-yl) ethanone (JWH-250)) are investigated in wastewater. The optimized conditions for the analysis of this set of compounds included a SPE clean-up step using a polymeric sorbent and the use of a pentafluorophenyl (PFP) chromatographic column. Despite the broad range of physicochemical properties of the analytes the method allowed acceptable absolute recoveries (40–109%) for all the studied compounds at different levels of concentration. Low method limits of detection (MLODs) were achieved, ranging between 0.3 and 10 ng/L except for BZP and CP47,497 (20 and 23 ng/L, respectively), allowing a reliable and accurate quantification of the analytes. The method was successfully applied to the analysis of IWW and EWW samples from five wastewater treatment plants (WWTPs) located in Santorini Island (a highly touristic resort in Greece). Four out of 10 compounds (a-PVP, CP47,497, JWH-122 and JWH-210) were detected at least in one sample, being the first evidence of their presence in wastewater. CP47,497 was the most ubiquitous and abundant compound, showing concentrations up to 634 ng/L in some case

    Non-target approach for the determination of novel micropollutants in wastewater using liquid chromatography quadrupole-time of flight mass spectrometry (LC-QTOF-MS)

    Get PDF
    Wastewaters contain a very large list of micropollutants and transformation products of environmental concern. All these (mostly) synthetic organic chemicals enter the wastewater treatment plants (WWTP) with influents and due to incomplete or zero removal are released in the aquatic environment. Thus, the study of the fate of the emerging pollutants and their transformation products in WWTPs is of paramount environmental importance and can also provide valuable information related to consumption trends. Target screening procedures are limited to a small fraction of these substances, due to the inability to obtain standards for all that substances and the ignorance of the existence of many of them. Recent advances in high resolution mass spectrometry (HRMS) have opened up new windows of opportunity in the field of complex samples analysis. Suspect screening, with suspected substances based on prior information but with no reference standard, is a powerful tool which allows a large increment in the number of compounds to be evaluated. However, in most cases many of the peaks showing greater intensity not correspond to substances included in the target and suspect screening lists. These substances are potentially relevant, due to their high concentration, and their identification is environmentally important. Nevertheless, full identification of unknown compounds is often difficult and there is no guarantee of a successful outcome. The aim of the present work is the development and application of a workflow for the tentative identification of relevant unknown substances (not detected in the previously applied target and suspect methods) using liquid chromatography quadrupole-time-of-flight mass spectrometry (LC–QToF-MS)

    Simultaneous determination of 148 pharmaceuticals and illicit drugs in sewage sludge based on ultrasound-assisted extraction and liquid chromatography–tandem mass spectrometry

    Get PDF
    This paper describes the development and validation of a new method for the simultaneous determination of 148 substances in sewage sludge. The selected compounds belong to different classes of pharmaceuticals, including antibiotics, analgesic and/or anti-inflammatory drugs, antiepileptics, benzodiazepines, antipsychotics, and antidepressants, among others, and illicit drugs, including opiates, opioids, cocaine, amphetamines, cannabinoids, and their metabolites. As far as the authors are aware, this is the first method in the peer-reviewed literature covering such a large number of target drugs for determination in a complex matrix like sewage sludge. The method presented herein combines ultrasoundassisted extraction (USE) and liquid chromatography coupled to tandem mass spectrometry. Good analytical performance was achieved, with limit-of-detection values below 10 ng g−1 d.w. for 91 % of the analytes and absolute recovery in the range 50–110 % for more than 77 % of the studied compounds. A combination of methanol and acidified water, also containing EDTA, proved to be the optimum solvent mixture to perform the extractions. An extra solid-phaseextraction clean-up step was not required, substantially reducing sample-preparation time and solvent consumption. Finally, the developed method was applied to the analysis of different sewage-sludge samples from five wastewater treatment plants of Santorini Island (Greece). Out of the 148 target compounds, 36 were detected. Several compounds, including acetylsalicylic acid, citalopram, and ciprofloxacin among others, had maximum concentrations above 100 ng g−1 d.w

    Identification of unknowns in real wastewater through the application of a LC-QTOF-MS based workflow

    Get PDF
    Wastewater contains a high number of organic micropollutants and transformation products of environmental concern. Recent approaches, combining methodologies based on target and suspect screening (for suspected substances based on prior information but with no reference standard) are important for the comprehensive characterization of environmental samples. Nevertheless, samples still contain many chromatographic peaks which do not correspond to substances included in target and suspect screening lists. These substances may be potentially relevant (e.g. due to their concentration or potential effects) and thus the identification of selected non-targets is important. However, full identification of unknown compounds is often difficult and there is no guarantee of a successful outcome. The aim of this work is to show some specific examples on the identification of unknown compounds in real wastewater (collected from the WWTP of Athens). Identifications were conducted using a developed integrated workflow based on LC–QToF-MS to detect formerly unknown organic contaminants in wastewater

    Targeted determination of more than 1500 micropollutants & transformation products in wastewater samples by liquid chromatography quadrupole-time-of-flight mass spectrometry with an accurate-mass database

    Get PDF
    High resolution mass spectrometry has dramatically improved the possibilities of the environmental analysis. The present study describes the development of an analytical method, based on liquid chromatography quadrupole-time-of-flight mass spectrometry (LC–QToF-MS) for the target determination of more than 1500 contaminants of emerging concern (CECs) and transformation products (TPs) including, among others, pharmaceuticals, illicit drugs, personal care products, pesticides, industrial chemicals, and sweeteners in wastewater. Analytes were extracted from wastewater samples by mixed mode solid-phase extraction, and data were acquired through broad-band Collision Induced Dissociation (bbCID) mode, providing MS and MS/MS spectra, simultaneously, in both positive and negative ionization mode (two separate runs). The in-house mass spectral database was built by injection of standard solution of the analytes and it includes information of the retention time, parent ions and adducts, as well as fragment ions. The raw data were analyzed with Bruker Target Analysis 1.3 software. Retention time, accurate mass of the precursor ion and adducts, isotopic pattern, in combination with absence of the peak in the procedural blank were the parameters used for confirmation of the target compounds. Experimental fragment ions were also considered, along with the ion ratio, intensity and isotopic pattern. Furthermore, semi-quantitation of these contaminants was possible. The method herein presented, in addition of providing accurate information about the presence of a large number of relevant substances, has the advantage that the data generated can be further processed for suspect and non-target screening, expanding the information on the samples. An important advantage of this method is that retrospective investigation of the data is available to look for the presence of additional CECs and their TPs, which were not considered at the time of the analysi

    Non-target and suspect screening strategies for electrodialytic soil remediation evaluation: Assessing changes in the molecular fingerprints and per- and polyfluoroalkyl substances (PFASs)

    Get PDF
    Contamination of soils with organic pollutants is an increasing global problem, so novel soil remediation techniques are urgently needed. One such technique is electrokinetic remediation, in which an electric field is applied over the soil to extract contaminants. Previous evaluations of the technique have been limited to a few specific compounds. In this study, we integrated the latest advances in high-resolution mass spectrometry (HRMS) to identify molecular fingerprints, and used the results to improve the mechanistic understanding necessary for successful remediation. A laboratory-scale 0.38 mA cm(-2) electrodialytic treatment was applied for 21 days to a contaminated soil from a firefighter training facility in Sweden. Non-target analysis allowed generic evaluation of changes in the soil organic fraction by tentatively determining the elemental composition of compounds present. The results showed that smaller oxygen-rich molecules were significantly transported to the anode by electromigration, while larger hydrogen-saturated molecules were transported to the cathode by electroosmotic flow. Wide suspect screening with >3000 per- and polyfluoroalkyl substances (PFASs) tentatively identified seven new PFASs in the test soil, including perfluoroheptanesulfonic acid (PFHpS), and PFASs with butoxy, ethoxy, ethanol, and ethylcyclohexanesulfonate functional groups

    Highly sensitive determination of 68 psychoactive pharmaceuticals, illicit drugs, and related human metabolites in wastewater by liquid chromatography–tandem mass spectrometry

    Get PDF
    The present work describes the development and validation of a highly sensitive analytical method for the simultaneous determination of 68 compounds, including illicit drugs (opiates, opioids, cocaine compounds, amphetamines, and hallucinogens), psychiatric drugs (benzodiazepines, barbiturates, anesthetics, antiepileptics, antipsychotics, antidepressants, and sympathomimetics), and selected human metabolites in influent and effluent wastewater (IWWand EWW) by liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS). The method involves a pre-concentration and cleanup step, carried out by solid-phase extraction (SPE) using the adsorbent Strata-XC, followed by the instrumental analysis performed by LC–MS/MS, using a Kinetex pentafluorophenyl (PFP) reversed-phase fused-core column and electrospray ionization (ESI) in both positive and negative modes. A systematic optimization of mobile phases was performed to cope with the wide range of physicochemical properties of the analytes. The PFP column was also compared with two reversed-phase columns: fused-core C18 and XBC18 (with a cross-butyl C18 ligand). SPE optimization and critical aspects associated with the trace level determination of the target compounds (e.g., matrix effects) have been also considered and discussed. Fragmentation patterns for all the classes were proposed. The validated method provides absolute recoveries between 75 and 120 % for most compounds in IWW and EWW. Low method limits of detection were achieved (between 0.04 and 10.0 ng/L for 87 % of the compounds), allowing a reliable and accurate quantification of the analytes at trace level. The method was successfully applied to the analysis of these compounds in five wastewater treatment plants in Santorini, a touristic island of the Aegean Sea, Greece. Thirty-two out of 68 compounds were detected in all IWW samples in the range between 0.6 ng/L (for nordiazepam) and 6,822 ng/L (for carbamazepine) and 22 out of 68 in all EWW samples, with values between 0.4 ng/L (for 9-OH risperidone) and 2,200 ng/L (for carbamazepine). The novel methodology described herein maximizes the information on the environmental analysis of these substances and also provides a first profile of 68 drugs in a Greek touristic are
    • 

    corecore