877 research outputs found

    Single‐Step 3D Printing of Silver‐Patterned Polymeric Devices for Bacteria Proliferation Control

    Get PDF
    This work describes the fabrication of silver-patterned polymeric devices via light-based 3D printing methods from a tailored resin. An acrylate resin containing silver nitrate (AgNO3) as a silver precursor is employed to generate silver nanoparticles (AgNPs) through the in situ reduction of the metallic salt. The silver-based resin is processed through a customized stereolithography SL-3D printing to fabricate structures with silver-patterned surfaces. This customized SL-printer (emitting at 405 nm) offers the possibility of adjusting the machine settings during the printing process allowing for AgNPs to be selectively generated by modifying the laser settings during the 3D printing step. Thus, the resin photopolymerization and the photoinduced formation of AgNPs-based strands can be sequentially achieved during the same printing process with the same light source and using the same printable resin. The fabricated silver-patterned devices exhibit different surface features that might be exploited in systems working in a marine environment to control biofilm proliferation. As a proof-of-concept, the antimicrobial behavior of the silver-based 3D printed device is tested against environmental bacterial mixed communities via UV–vis spectroscopy and evaluating the absorbance change. Further tests, however, would be needed to reinforce the evidence of the bacteria behavior on the silver-patterned 3D printed devices

    Response-Adapted Postinduction Strategy in Patients With Advanced-Stage Follicular Lymphoma: The FOLL12 Study

    Get PDF
    Purpose: We compared 2 years of rituximab maintenance (RM) with a response-adapted postinduction approach in patients with follicular lymphoma who responded to induction immunochemotherapy. Methods: We randomly assigned treatment-naïve, advanced-stage, high-tumor burden follicular lymphoma patients to receive standard RM or a response-adapted postinduction approach on the basis of metabolic response and molecular assessment of minimal residual disease (MRD). The experimental arm used three types of postinduction therapies: for complete metabolic response (CMR) and MRD-negative patients, observation; for CMR and MRD-positive (end of induction or follow-up) patients, four doses of rituximab (one per week, maximum three courses) until MRD-negative; and for non-CMR patients, one dose of ibritumomab tiuxetan followed by standard RM. The study was designed as noninferiority trial with progression-free survival (PFS) as the primary end point. Results: Overall, 807 patients were randomly assigned. After a median follow-up of 53 months (range 1-92 months), patients in the standard arm had a significantly better PFS than those in the experimental arm (3-year PFS 86% v 72%; P < .001). The better PFS of the standard vs experimental arm was confirmed in all the study subgroups except non-CMR patients (n = 65; P = .274). The 3-year overall survival was 98% (95% CI, 96 to 99) and 97% (95% CI, 95 to 99) in the reference and experimental arms, respectively (P = .238). Conclusion: A metabolic and molecular response-adapted therapy as assessed in the FOLL12 study was associated with significantly inferior PFS compared with 2-year RM. The better efficacy of standard RM was confirmed in the subgroup analysis and particularly for patients achieving both CMR and MRD-negative
    corecore