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Abstract 

1,1,2-Trisnorsqualenoic acid was conjugated to paclitaxel to obtain the squalenoyl–paclitaxel 

prodrug with the aim to improve the incorporation in phospholipid bilayers. Differential scanning 

calorimetry technique was employed to compare the interaction of squalenoyl–paclitaxel prodrug 

and free paclitaxel with phospholipid bilayers. The possibility of using lipid vesicles as carrier for 

the prodrug was also evaluated. An increased encapsulation into phospholipid bilayers of 

squalenoyl–paclitaxel with respect to the free drug was observed. The ability of lipid vesicles to 

retain the loaded prodrug was also observed which make this system to be considered as carrier for 

the prodrug. 

 

 

1. Introduction 

 Paclitaxel (Taxol®) is an antineoplastic agent that is derived from the bark of the Pacific yew tree 

(Taxus brevifolia) (Wani et al., 1971). Paclitaxel has been used to treat ovarian carcinoma, breast 

carcinoma, leukemia, melanoma, prostate carcinoma etc. (Choi and Jo, 2004). Its transport and 

delivery is obstacolated by a very low water solubility (Vyas, 1995) then, at the present, it is 

formulated in a mixture of 50:50% (v/v) polyoxyethylated castor oil (Cremophor EL) and 

dehydrated ethanol. However, this formulation vehicle has been found to cause serious side-effects, 



 

 

including hypersensitivity and neurotoxicity reactions (Weiss et al., 1990; Fjallskog et al., 1993). 

Then, there is a continued interest in finding formulations that can be administered easily and 

safely. Water-soluble paclitaxel derivatives have been prepared and their activity has been 

investigated (Greenwald et al., 1996, 2003; Ceruti et al., 2000; Singer et al., 2003). Alternatively, 

paclitaxel has been encapsulated in biodegradable polymers (Mu and Feng, 2003; Liu et al., 2010; 

Nanda et al., 2011). Moreover, cyclodextrins (Alcaro et al., 2002) emulsion (Han et al., 2004; 

Constantinides et al., 2004) microspheres (De et al., 2005; Jackson et al., 2007) nanoparticles 

(Bhardwaj et al., 2009; Chakravarthi et al., 2010) formulation have been prepared and investigated. 

The incorporation of paclitaxel in vesicular carrier has been attempted (Meng et al., 2010; Paolino 

et al., 2012). However, the amount of paclitaxel that can be incorporated into lipid bilayers is 

limited (Sharma et al., 1998; Shieh et al., 1997; Balasubramanian and Straubinger, 1994). 

Therefore, it could be of interest to use a lipid-based prodrug of paclitaxel that could be 

incorporated and retained in lipid carrier preparations. Some attempt has been done to achieve this 

goal. 2 -Alpha-bromohexadecanoyl paclitaxel prodrug has been synthetized and incorporated in 

lipid systems that were found more effective than paclitaxel against a human ovarian tumor (Ahmad 

et al., 1999). We have exploited the conjugation of a lipophilic moiety to some drug in order to 

increase their affinity for lipid systems with respect to the free drug. In those researches we have 

utilized as lipophilic moiety 1,1 ,2-trisnorsqualenoic acid (squaleneCOOH) (Castelli et al., 2007; 

Sarpietro et al., 2009, 2010, 2011) a derivative of squalene, a compound widespread in nature, that 

is synthesized within cells and consumed as an integral part of the human diet. The prodrugs 

obtained showed a deep interaction with phospholipid bilayers. Following this approach, in the 

present research, we conjugated squaleneCOOH with paclitaxel with the aim to obtain a highly 

lipophilic squalenoyl–paclitaxel prodrug (Scheme 1)  that can be incorporated and retained into the 

lipid system. The interaction of the prodrug with lipid bilayers represented by 

dimyristoylphosphatidylcholine (DMPC) multilamellar vesicles (MLV) has been investigated by 

differential scanning calorimetry technique that can reveal the effect caused by the insertion of 

“stranger” molecules in the phospholipid bilayers through the variation of the phospholipid bilayers 

thermotropic parameters (transition temperature, Tm, enthalpy change, H) induced by the 

incorporated molecules. Transmembrane experiments have been also carried out to verify the ability 

of the prodrug to be retained in the lipid system. 

 

2. Materials and methods 

 2.1. Materials Synthetic 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC, purity 99%) was 

obtained from Genzyme (Switzerland). Paclitaxel was purchased from Indena (Milan, Italy), other 



 

 

reagents were purchased from Sigma–Aldrich (Milwaukee, WI). The NMR spectra were recorded 

using a NMR Bruker Avance 300 spectrometer. Elemental analyses were carried out by Redox Snc 

(Monza, Italy). All HPLC analyses were performed on a Merck-Hitachi L- 6200 Liquid 

Chromatographer equipped with L5000 LC Controller (Merck, Milan, Italy) and the eluting 

fractions containing PTX were monitored at 227 nm using an L-4200 UV detector. 

 

 2.2. Synthesis and characterization of squalenoyl–paclitaxel 

 Paclitaxel (1.2 g, 1.4 mmol), dissolved in 30 ml of dichloromethane, was reacted with N-ethyl-N -

3-dimethylaminopropyl carbodiimide (0.6 equiv.), in the presence of 4- dimethylamino pyridine 

(0.2 equiv.) and 1,1 ,2-trisnorsqualenoic acid (0.6 equiv.) previously dissolved in DCM at room 

temperature. After 3 h, the reaction was stopped with water and extracted with brine. The crude 

mixture was purified by chromatography on SiO2 eluted with a gradient (from 95:5 to 80:20) of 

dichloromethane/ethyl acetate to give the pure compound (1) (Scheme 1) (Yield 65%). TLC control 

dichloromethane/ethanol (97:3) Rf 0.55. The purity of squalenoyl–paclitaxel was checked by HPLC 

on a RP-18 reverse phase column (LiChrospher 100 RP 18e 5 m, Merck) eluted with an 

acetonitrile/water mixture (40:60 and, after 5 min, gradient up to 100% acetonitrile, 20 min), elution 

time 19.23 min. Purity by HPLC was above 92%. Characterization: 1H NMR (300 MHz, CDCl3): 

8.13 (d, 2H, C23, C27ArH), 7.75 (d, 2H, C39, C43 ArH), 7.62 (t, 1H, C25 ArH), 7.53–7.49 (band, 

3H, C24, C26, C41 ArH), 7.43–7.35 (band, 7H, C33, C34, C35, C36, C37, C40, C42 ArH), 6.91 

(d,1H, 4 NH), 6.35 (s, 1H, C(10)-H), 6.24 (m, 1H, C(13)-H), 5.99 (dd, 1H, C(3 )-H), 5.69 (d, 1H, 

C(2)-H), 5.53 (d, 1H, C(2 )-H), 5.20 (m, 5H, C(SQ-H)), 4.97 (d, 1H, C(5)-H), 4.44 (m, 1H, C(7)-

H), 4.33 (d, 1H, C(20)-Ha), 4.20 (d, 1H, C(20)-Hb), 3.85 (d, 1H, C(3)-H), 2.55 (m, 1H, C(6)-Ha), 

2.49 (s, 3H, C(29)-H), 2.45 (m, 2H, CH2–CH2–CO SQ), 2.30 (t, 2H, CH2–CH2–CO SQ), 2.23 (s, 

3H, C(31)-H), 2.09 (s, 3H, C(18)-H), 2.00 (m, 16H, CH2 SQ), 1.97 (m, 1H, C(6)-Hb), 1.70 (m, 1H, 

C(14)-Ha), 1.67 (s, 3H, C(19)-H), 1.61 (m, 18H, C(SQ)–CH3), 1,25 (m, 1H, C(14)-Hb), 1.21 (s, 

3H, C(16)-H), 1.13 (s, 3H, C(17)-H). ESI-MS calculated for C74H93NO15: 1235.65. Found 

1237.24 (MH+). Elemental analysis calc: C 71.88%, H 7.58%, N 1.13%; measured C 71.99%, H 

7.63%, N 1.19%.  

The lipophilic character of the synthesized compound was determined using a chromatographic Rm 

method as described by some of us (Dosio et al., 2010). Theoretical log P was calculated using the 

software ALOGPS 2.1 available on the Web site http://www.vcclab.org/lab/alogps/start.html.  

 

2.3. Differential scanning calorimetry. 



 

 

 Differential scanning calorimetry studies were performed using a Mettler TASTARe System 

equipped with a DSC822e cell and a Mettler STARe V8.10 software. The reference pan was filled 

with 120 µl of 50 mM TRIS. The calorimetric system was calibrated, in transition temperature and 

enthalpy changes, by using indium and palmitic acid (purity ≥ 99.95% and ≥99.5%, respectively; 

Fluka, Switzerland) following the procedure of the Mettler STAR software.  

 

2.4. Multilamellar vesicles preparation. 

 Multilamellar vesicles were prepared empty and loaded with compounds. Stock solutions of 

DMPC, paclitaxel and squalenoyl–paclitaxel were prepared in chloroform/methanol (1:1, v/v). 

Aliquots of DMPC solution corresponding to 0.010325 mmol were put in glass tubes and aliquots 

of paclitaxel or squalenoyl–paclitaxel were added to have the following molar fraction of 

compounds with respect to DMPC: 0.00, 0.015, 0.03, 0.045, 0.06, 0.09, 0.12. The solvents were 

evaporated under a nitrogen stream and the obtained films were freeze dried to eliminate solvents 

traces. 168 µl of 50 mM TRIS (pH 7.4) was added to the films and the samples were heated at 37 

◦C (temperature higher than the DMPC Tm) for 1 min and vortexed for 1 min, for three times and, 

then, left in a water bath at 37 ◦C for 60 min. 

 

 2.5. MLV/paclitaxel and MLV/squalenoyl–paclitaxel interaction. 

 120 µl of the MLV (0.007375 mmol of DMPC) were put in a 160 µl aluminium pan which was 

hermetically closed and submitted to calorimetric scans, for at least three times, as follows: (i) a 

heating scan from 5 to 37 ◦C, at 2 ◦C/min; (ii) a cooling scan from 37 to 5 ◦C, at 4 ◦C/min. The 

experiments were carried out in triplicate to be sure of the results reproducibility.  

 

2.6. Paclitaxel and squalenoyl–paclitaxel absorption by MLV. 

 120 µl of MLV were put in the calorimetric pan where an amount of drug or prodrug 

corresponding to a 0.09 molar fraction with respect the DMPC had been weighted. The pan was 

closed and submitted to calorimetric scans as follows: (i) a heating scan from 5 to 37 ◦C, at 2 

◦C/min; (ii) a isothermal scan of 60 min at 37 ◦C; (iii) a cooling scan from 37 to 5 ◦C, at 4 ◦C/min; 

for at least eight times.  

 

2.7. Evaluation of liposomes as carrier of squalenoyl–paclitaxel. 

 In this kind of experiments MLV were considered both as lipophilic carrier for paclitaxel and 

squalenoyl–paclitaxel and as biomembrane model. In particular compound loaded MLV were used 

as carrier whereas unloaded MLV were used as biomembrane model. The point of this experiment 



 

 

was that loaded MLV mixed with unloaded MLV at a temperature higher than the Tm can transfer 

the loaded compound to unloaded MLV so after several incubation periods an equilibrium between 

MLV could be reached. 60 l of unloaded MLV (prepared without compound) were put in the 

calorimetric pan and 60 l of loaded MLV (prepared with paclitaxel or squalenoyl–paclitaxel at 0.06 

molar fractions with respect to the DMPC) were added. The pan was closed and submitted to the 

same calorimetric scans described in the previous section. 

 

 3. Results and discussion  

We have conjugated paclitaxel with squaleneCOOH to obtain the squalenoyl–paclitaxel prodrug 

(Scheme 1). This derivative was obtained by linkage atthe 2 -hydroxyl group of paclitaxel, as 

several previously synthesized taxoids (Skwarczynski et al., 2006). Derivatives obtained exploiting 

this position are much more accessible to enzymes and are able to undergo hydrolysis so as to 

release the active drug. In the reported experimental conditions the ester in 2 position was the most 

relevant derivative obtained while the 7-hydroxyl reacted only after an almost complete titration of 

2 hydroxyl using a larger amount of squaleneCOOH and N-ethyl-N - 3-dimethylaminopropyl 

carbodiimide reagent (1–1.4 equiv.). The achieved products were clearly identified following the 

NMR spectra at 4.44 ppm (7 –CH–OH proton) and 4.78 ppm (2 –CH–OH proton). Its relative 

lipophilicity factor (Rm) together with that of paclitaxel was evaluated. The experimental 

evaluation was compared with theoretical log P values. It was observed that squalene moiety 

strongly increased the lipophilicity of paclitaxel. Experimental and theoretical evaluations were in 

agreement (Table 1). The interaction of the prodrug with biomembrane model was evaluated and 

compared with that of paclitaxel. With this aim, MLV were prepared empty and loaded with the 

drug or the prodrug and submitted to DSC analysis. The interaction of the compounds with MLV 

was evaluated comparing the calorimetric curves of the MLV with compound with that of MLV 

without compound (Fig. 1A and B). In fact, any compound interacting with MLV phospholipids 

produces a variation of the calorimetric curve of MLV; usually the variation is dependent on the 

amount of compound interacting with MLV. The calorimetric heating thermogram of MLV made of 

DMPC alone exhibits two thermal events, a lower-temperature, less energetic endotherm centered 

at about 17 ◦C, corresponding to the well characterized pretransition, and a higher-temperature, 

more energetic endotherm centered at about 24.8 ◦C, which correspond to the main or chain-melting 

phase transition of DMPC (Lewis et al., 1987). The incorporation of paclitaxel in the MLV 2 mW 

produces some variation in the MLV thermogram (Fig. 1A). The pretransition is abolished; the 

main phase transition peak is gradually shifted toward lower temperature and broadened for molar 

fraction of paclitaxel up to 0.06 but turns to higher temperature and sharp for molar fraction of 



 

 

paclitaxel >0.06. Moreover, when the molar fraction of paclitaxel is >0.015 and 0.03, a two-

component main phase transition is evident which indicates a not homogeneous distribution of the 

prodrug in the bilayers and, hence the presence in the bilayer of regions of phospholipids that are 

rich in prodrug and perturbed and of regions of phospholipids poor in prodrug and less perturbed 

(Lohner and Prenner, 1999; Lambros and Rahman, 2004). The stronger interaction of squalenoyl–

paclitaxel with biomembrane with respect to paclitaxel could be due to its increased lipophilicity 

that in turn increases the affinity for the phospholipid bilayers. As described above, we put 

paclitaxel or squalenoyl–paclitaxel (molar fraction = 0.09) in contact with MLV and submitted the 

samples to subsequent calorimetric scans separated by isothermal (37 ◦C) periods of 60 min. This 

experiment was carried out to evaluate the capability of the drug and prodrug to migrate through the 

aqueous medium and subsequently be absorbed by MLV. If this occurred the calorimetric behavior 

of MLV should change due to the presence of the compounds within the bilayers. The calorimetric 

thermograms shown in Fig. 2 are compared with the calorimetric thermogram of MLV prepared 

without compound and with that of MLV prepared with compound at 0.09 molar fraction. The latter 

thermogram is used as reference as it should be obtained if the compound was absorbed by MLV. 

There is not evidence of variation in MLV behavior neither when paclitaxel nor when squalenoyl–

paclitaxel are used which indicate the inability of the two compounds to dissolve in the aqueous 

medium and be absorbed by MLV, as expected given the hydrophobic nature and the water 

insolubility of the compounds. Liposomes have been widely investigated for their properties as 

potential drug delivery systems (Gregoriadis, 1988). They have become a valuable experimental 

and commercially important drug delivery system, due to their biodegradability, biocompatibility 

and ability to entrap lipophilic and hydrophilic drugs (Torchilin, 2005). In this research MLV were 

used as biomembrane model as well as drug carrier; in particular, we evaluated the capability of 

MLV to retain the incorporated prodrug and, then, their possible use as prodrug carrier. With this 

aim we put prodrug loaded MLV (prodrug carrier) in contact with unloaded MLV (biomembrane 

model) and submitted the sample to calorimetric scans at intervals of 60 min during which the 

temperature was kept at 37 ◦C. For comparison reasons the experiment with paclitaxel was carried 

out too. The loaded MLV were prepared with 0.06 molar fraction of compound. This molar fraction 

was chosen as it exerted the highest effect on MLV, with concern to paclitaxel (see Fig. 1A). The 

calorimetric thermograms are compared with those of unloaded and loaded MLV which were put in 

contact and with that of MLV prepared with 0.03 molar fraction of drug or prodrug (reference 

curve) (Fig. 3A and B). If the carrier was able to hold the compound incorporated, the calorimetric 

thermograms should remain unchanged; if, instead, the carrier lost the compound, we should 

observe some variation in the calorimetric thermograms which should look like the reference 



 

 

thermogram. What we see in Fig. 3A, relative to paclitaxel, is only the disappearance of the 

pretransition peak while the main transition peak remains unchanged. With regard to squalenoyl–

paclitaxel (Fig. 3B), the calorimetric thermograms show three components: the first (at about 17 ◦C) 

is attributable to the pretransition; the second (a large shoulder from about 21 to 24 ◦C) attributable 

to loaded MLV and the third (at about 24.8 ◦C) relative to unloaded MLV. They remain almost 

unchanged for all the incubation times meaning that the lipophilic carrier holds the incorporated 

prodrug. This means that the MLV may be used as a carrier while maintaining the drug loaded up to 

inside the cell. 

 

4. Conclusion  

Starting from the evidence that only a small amount of paclitaxel can be incorporated into 

liposomes, we conjugated the drug to 1,1,2-trisnorsqualenoic acid with the aim to obtain a molecule 

with a stronger affinity with the phospholipid bilayers and that can, consequently, be incorporated 

and retained in the lipid system. The results obtained clearly indicate an improved incorporation 

efficiency of squalenoyl–paclitaxel with respect to paclitaxel into the liposome, probably due to its 

stronger lipophilic character. In addition, liposome can retain the incorporated squalenoyl–

paclitaxel and hence a lipid system could be considered as a possible carrier for the prodrug. 
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