12,121 research outputs found

    Exact Kohn-Sham eigenstates versus quasiparticles in simple models of strongly correlated electrons

    Get PDF
    We present analytic expressions for the exact density functional and Kohn-Sham Hamiltonian of simple tight-binding models of correlated electrons. These are the single- and double-site versions of the Anderson, Hubbard and spinless fermion models. The exact exchange and correlation potentials are fully non-local. The analytic expressions allow to compare the Kohn-Sham eigenstates of exact density functional theory with the many-body quasi-particle states of these correlated-electron systems. The exact Kohn-Sham spectrum describes correctly many of the non-trivial features of the many-body quasi-particle spectrum, as for example the precursors of the Kondo peak. However, we find that some pieces of the quasi-particle spectrum are missing because the many-body phase-space for electron and hole excitations is richer

    Universality in the transport response of molecular wires physisorbed onto graphene electrodes

    Get PDF
    We analyze the low-voltage transport response of large molecular wires bridging graphene electrodes, where the molecules are physisorbed onto the graphene sheets by planar anchor groups. In our study, the sheets are pulled away to vary the gap length and the relative atomic positions. The molecular wires are also translated in directions parallel and perpendicular to the sheets. We show that the energy position of the Breit-Wigner molecular resonances is universal for a given molecule, in the sense that it is independent of the details of the graphene edges, gaps lengths or of the molecule positions. We discuss the need to converge carefully the k-sampling to provide reasonable values of the conductance.Comment: 6 pages, 6 figure

    Impact of edge shape on the functionalities of graphene-based single-molecule electronics devices

    Get PDF
    We present an ab-initio analysis of the impact of edge shape and graphene-molecule anchor coupling on the electronic and transport functionalities of graphene-based molecular electronics devices. We analyze how Fano-like resonances, spin filtering and negative differential resistance effects may or may not arise by modifying suitably the edge shapes and the terminating groups of simple organic molecules. We show that the spin filtering effect is a consequence of the magnetic behavior of zigzag-terminated edges, which is enhanced by furnishing these with a wedge shape. The negative differential resistance effect is originated by the presence of two degenerate electronic states localized at each of the atoms coupling the molecule to graphene which are strongly affected by a bias voltage. The effect could thus be tailored by a suitable choice of the molecule and contact atoms if edge shape could be controlled with atomic precision.Comment: 11 pages, 20 figure

    Boundary Effects in 2+1 Dimensional Maxwell-Chern-Simons Theory

    Get PDF
    The boundary effects in the screening of an applied magnetic field in a finite temperature 2+1 dimensional model of charged fermions minimally coupled to Maxwell and Chern-Simons fields are investigated. It is found that in a sample with only one boundary -a half-plane- a total Meissner effect takes place, while in a sample with two boundaries -an infinite strip- the external magnetic field partially penetrates the material.Comment: revte

    Symmetry-induced interference effects in metalloporphyrin wires

    Full text link
    Organo-metallic molecular structures where a single metallic atom is embedded in the organic backbone are ideal systems to study the effect of strong correlations on their electronic structure. In this work we calculate the electronic and transport properties of a series of metalloporphyrin molecules sandwiched by gold electrodes using a combination of density functional theory and scattering theory. The impact of strong correlations at the central metallic atom is gauged by comparing our results obtained using conventional DFT and DFT+U approaches. The zero bias transport properties may or may not show spin-filtering behavior, depending on the nature of the d state closest to the Fermi energy. The type of d state depends on the metallic atom and gives rise to interference effects that produce different Fano features. The inclusion of the U term opens a gap between the d states and changes qualitatively the conductance and spin-filtering behavior in some of the molecules. We explain the origin of the quantum interference effects found as due to the symmetry-dependent coupling between the d states and other molecular orbitals and propose the use of these systems as nanoscale chemical sensors. We also demonstrate that an adequate treatment of strong correlations is really necessary to correctly describe the transport properties of metalloporphyrins and similar molecular magnets

    Hydrotalcite/SBA15 composites for pre-combustion CO2 capture: CO2

    Get PDF
    Hydrotalcite-like compounds (HT) show potential as CO2 adsorbent materials for pre-combustion CO2 capture applications, but require improvements in stability, adsorption capacity and kinetics. In this study, HT/SBA15 hybrids (with different Mg/Al ratios varying from 0.3 to 3) have been synthesised using a two-stage grafting method to coat a mesoporous SBA15 with hydrotalcite layers. The HT/SBA15 hybrids showed significant improvement in intrinsic CO2 uptake (per mass of HT), initial uptake rate, and multicycle stability compared to unsupported HT. Compared to previously reported nanostructured carbon supports (e.g. CNF, MWCNTs), the HT/SBA15 hybrids were found to be more thermally stable and exhibit comparable adsorption uptake and rates. In particular, the use of SBA15 as a support is shown to prevent the gradual loss in weight from thermal decomposition observed for HT/MWCNT or HT/GO composites over extended cycling

    Offline Signature Verification by Combining Graph Edit Distance and Triplet Networks

    Full text link
    Biometric authentication by means of handwritten signatures is a challenging pattern recognition task, which aims to infer a writer model from only a handful of genuine signatures. In order to make it more difficult for a forger to attack the verification system, a promising strategy is to combine different writer models. In this work, we propose to complement a recent structural approach to offline signature verification based on graph edit distance with a statistical approach based on metric learning with deep neural networks. On the MCYT and GPDS benchmark datasets, we demonstrate that combining the structural and statistical models leads to significant improvements in performance, profiting from their complementary properties

    Beyond-Constant-Mass-Approximation Magnetic Catalysis in the Gauge Higgs-Yukawa Model

    Get PDF
    Beyond-constant-mass approximation solutions for magnetically catalyzed fermion and scalar masses are found in a gauge Higgs-Yukawa theory in the presence of a constant magnetic field. The obtained fermion masses are several orders of magnitude larger than those found in the absence of Yukawa interactions. The masses obtained within the beyond-constant-mass approximation exactly reduce to the results within the constant-mass approach when the condition νln(1m^2)1\nu \ln (\frac{1}{\hat{m}^{2}})\ll 1 is satisfied. Possible applications to early universe physics and condensed matter are discussed.Comment: Revised numerical results. New figures. Several sections rewritte
    corecore