931 research outputs found

    Histopathological characterization of experimentally induced cutaneous loxoscelism in rabbits inoculated with Loxosceles similis venom

    Full text link
    Envenomation by Loxosceles bites is characterized by dermonecrotic and/or systemic features that lead to several clinical signs and symptoms called loxoscelism. Dermonecrotic lesions are preceded by thrombosis of the dermal plexus. Recent studies show that atheromatous plaque is prone to thrombosis due to endothelial cell apoptosis. To the best of our knowledge, there are no reports of microscopic dermal lesion and endothelial cell apoptosis induced by Loxosceles similis venom in the literature. Thus, the aim of the present study is to describe histological lesions induced by L. similis venom in rabbit skin and to elucidate whether apoptosis of endothelial cells is involved in the pathogenesis of loxoscelism. Forty male rabbits were split into two groups: the control group (intradermally injected with 50 µL of PBS) and the experimental group (intradermally injected with 0.5 µg of L. similis crude venom diluted in 50 µL of PBS). After 2, 4, 6 and 8 hours of injection, skin fragments were collected and processed for paraffin or methacrylate embedding. Sections of 5 µm thick were stained by HE, PAS or submitted to TUNEL reaction. Microscopically, severe edema, diffuse heterophilic inflammatory infiltrate, perivascular heterophilic infiltrate, thrombosis, fibrinoid necrosis of arteriolar wall and cutaneous muscle necrosis were observed. Two hours after venom injection, endothelial cells with apoptosis morphology were evidenced in the dermal plexus. Apoptosis was confirmed by TUNEL reaction. It seems that endothelial cell apoptosis and its consequent desquamation is an important factor that induces thrombosis and culminates in dermonecrosis, which is characteristic of cutaneous loxoscelism

    A fresh look at the evolution and diversification of photochemical reaction centers

    Get PDF
    In this review, I reexamine the origin and diversification of photochemical reaction centers based on the known phylogenetic relations of the core subunits, and with the aid of sequence and structural alignments. I show, for example, that the protein folds at the C-terminus of the D1 and D2 subunits of Photosystem II, which are essential for the coordination of the water-oxidizing complex, were already in place in the most ancestral Type II reaction center subunit. I then evaluate the evolution of reaction centers in the context of the rise and expansion of the different groups of bacteria based on recent large-scale phylogenetic analyses. I find that the Heliobacteriaceae family of Firmicutes appears to be the earliest branching of the known groups of phototrophic bacteria; however, the origin of photochemical reaction centers and chlorophyll synthesis cannot be placed in this group. Moreover, it becomes evident that the Acidobacteria and the Proteobacteria shared a more recent common phototrophic ancestor, and this is also likely for the Chloroflexi and the Cyanobacteria. Finally, I argue that the discrepancies among the phylogenies of the reaction center proteins, chlorophyll synthesis enzymes, and the species tree of bacteria are best explained if both types of photochemical reaction centers evolved before the diversification of the known phyla of phototrophic bacteria. The primordial phototrophic ancestor must have had both Type I and Type II reaction centers

    Comparative cytogenetics among populations of Astyanax altiparanae (Characiformes, Characidae, Incertae sedis)

    Get PDF
    Cytogenetic data are presented for Astyanax altiparanae populations from three Brazilian hydrographic systems. The chromosomal data obtained in A. altiparanae support the hypothesis of diploid number conservation. However, small differences in the karyotype formula and number of nucleolar organizer regions were observed in these populations. The apparent karyotypical similarity among the studied populations strongly suggests a close relationship among them with some chromosomal divergences due to gene flow restriction

    The protective gene dose effect of the APOE ε2 allele on gray matter volume in cognitively unimpaired individuals

    Get PDF
    INTRODUCTION: Harboring two copies of the apolipoprotein E (APOE) ε2 allele strongly protects against Alzheimer's disease (AD). However, the effect of this genotype on gray matter (GM) volume in cognitively unimpaired individuals has not yet been described. METHODS: Multicenter brain magnetic resonance images (MRIs) from cognitively unimpaired ε2 homozygotes were matched (1:1) against all other APOE genotypes for relevant confounders (n = 223). GM volumes of ε2 genotypic groups were compared to each other and to the reference group (APOE ε3/ε3). RESULTS: Carrying at least one ε2 allele was associated with larger GM volumes in brain areas typically affected by AD and also in areas associated with cognitive resilience. APOE ε2 homozygotes, but not APOE ε2 heterozygotes, showed larger GM volumes in areas related to successful aging. DISCUSSION: In addition to the known resistance against amyloid-β deposition, the larger GM volumes in key brain regions may confer APOE ε2 homozygotes additional protection against AD-related cognitive decline

    Proteomic Analysis of the Secretory Response of Aspergillus niger to D-Maltose and D-Xylose

    Get PDF
    Fungi utilize polysaccharide substrates through extracellular digestion catalyzed by secreted enzymes. Thus far, protein secretion by the filamentous fungus Aspergillus niger has mainly been studied at the level of individual proteins and by genome and transcriptome analyses. To extend these studies, a complementary proteomics approach was applied with the aim to investigate the changes in secretome and microsomal protein composition resulting from a shift to a high level secretion condition. During growth of A. niger on d-sorbitol, small amounts of d-maltose or d-xylose were used as inducers of the extracellular amylolytic and xylanolytic enzymes. Upon induction, protein compositions in the extracellular broth as well as in enriched secretory organelle (microsomal) fractions were analyzed using a shotgun proteomics approach. In total 102 secreted proteins and 1,126 microsomal proteins were identified in this study. Induction by d-maltose or d-xylose resulted in the increase in specific extracellular enzymes, such as glucoamylase A on d-maltose and β-xylosidase D on d-xylose, as well as of microsomal proteins. This reflects the differential expression of selected genes coding for dedicated extracellular enzymes. As expected, the addition of extra d-sorbitol had no effect on the expression of carbohydrate-active enzymes, compared to addition of d-xylose or d-maltose. Furthermore, d-maltose induction caused an increase in microsomal proteins related to translation (e.g., Rpl15) and vesicular transport (e.g., the endosomal-cargo receptor Erv14). Millimolar amounts of the inducers d-maltose and d-xylose are sufficient to cause a direct response in specific protein expression levels. Also, after induction by d-maltose or d-xylose, the induced enzymes were found in microsomes and extracellular. In agreement with our previous findings for d-xylose induction, d-maltose induction leads to recruitment of proteins involved in proteasome-mediated degradation
    • …
    corecore