3,781 research outputs found

    MHD disc winds

    Get PDF
    This is a doctorate level lecture on the physics of accretion discs driving magnetically self-confined jets, usually referred to in the literature as disc winds. I will first review the governing magnetohydrodynamic equations and then discuss their physical content. At that level, necessary conditions to drive jets from keplerian accretion discs can already be derived. These conditions are validated with self-similar calculations of accretion-ejection structures. In a second part, I will critically discuss the biases introduced when using self-similarity as well as some other questions such as: Are these systems really unstable? Can a standard accretion disc provide the conditions to launch jets in its innermost parts? What is the difference between X-winds and disc-winds? Finally, the magnetic interaction between a protostar and its circumstellar disc will be discussed with a focus on stellar spin down.Comment: 25 pages, 11 figures to be published in Lecture Notes in Physics, "Jets from Young Stars: Models and Constraints", J. Ferreira, C. Dougados and E. Whelan (eds), Springer Verla

    Braking down an accreting protostar: disc-locking, disc winds, stellar winds, X-winds and Magnetospheric Ejecta

    Full text link
    Classical T Tauri stars are low mass young forming stars that are surrounded by a circumstellar accretion disc from which they gain mass. Despite this accretion and their own contraction that should both lead to their spin up, these stars seem to conserve instead an almost constant rotational period as long as the disc is maintained. Several scenarios have been proposed in the literature in order to explain this puzzling "disc-locking" situation: either deposition in the disc of the stellar angular momentum by the stellar magnetosphere or its ejection through winds, providing thereby an explanation of jets from Young Stellar Objects. In this lecture, these various mechanisms will be critically detailed, from the physics of the star-disc interaction to the launching of self-confined jets (disc winds, stellar winds, X-winds, conical winds). It will be shown that no simple model can account alone for the whole bulk of observational data and that "disc locking" requires a combination of some of them.Comment: 60 pages, 29 figures Lecture held in Evry Schatzman School 201

    On fan-shaped cold MHD winds from Keplerian accretion discs

    Full text link
    We investigate under which conditions cold, fan-shaped winds can be steadily launched from thin (Keplerian) accretion discs. Such winds are magneto-centrifugal winds launched from a thin annulus in the disc, along open magnetic field lines that fan out above the disc. In principle, such winds could be found in two situations: (1) at the interface between an inner Jet Emitting Disc, which is itself powering magneto-centrifugally driven winds, and an outer standard accretion disc; (2) at the interface between an inner closed stellar magnetosphere and the outer standard accretion disc. We refer to Terminal or T-winds to the former kind and to Magnetospheric or M-winds to the latter. The full set of resistive and viscous steady state MHD equations are analyzed for the disc (the annulus), which allow us to derive general expressions valid for both configurations. We find that, under the framework of our analysis, the only source of energy able to power any kind of fan-shaped winds is the viscous transport of rotational energy coming below the inner radii. Using standard local α\alpha prescriptions for the anomalous (turbulent) transport of angular momentum and magnetic fields in the disc, we derive the strength of the transport coefficients that are needed to steadily sustain the global configuration. It turns out that, in order for these winds to be dynamically relevant and explain observed jets, the disc coefficients must be far much larger than values expected from current knowledge of turbulence occurring inside proto-stellar discs. Either the current view on MHD turbulence must be deeply reconsidered or steady-state fan-shaped winds are never realized in Nature. The latter hypothesis seems to be consistent with current numerical simulations.Comment: Among several possibilites, this paper addresses also the case of the X-wind Accepted for publication in MNRA

    MHD simulations of accretion onto a dipolar magnetosphere. II. Magnetospheric ejections and stellar spin-down

    Full text link
    This paper examines the outflows associated with the interaction of a stellar magnetosphere with an accretion disk. In particular, we investigate the magnetospheric ejections (MEs) due to the expansion and reconnection of the field lines connecting the star with the disk. Our aim is to study the dynamical properties of the outflows and evaluate their impact on the angular momentum evolution of young protostars. Our models are based on axisymmetric time-dependent magneto-hydrodynamic simulations of the interaction of the dipolar magnetosphere of a rotating protostar with a viscous and resistive disk, using alpha prescriptions for the transport coefficients. Our simulations are designed in order to model: the accretion process and the formation of accretion funnels; the periodic inflation/reconnection of the magnetosphere and the associated MEs; the stellar wind. Similarly to a magnetic slingshot, MEs can be powered by the rotation of both the disk and the star so that they can efficiently remove angular momentum from both. Depending on the accretion rate, MEs can extract a relevant fraction of the accretion torque and, together with a weak but non-negligible stellar wind torque, can balance the spin-up due to accretion. When the disk truncation approaches the corotation radius, the system enters a "propeller" regime, where the torques exerted by the disk and the MEs can even balance the spin-up due to the stellar contraction. The MEs spin-down efficiency can be compared to other scenarios, such as the Ghosh & Lamb, X-wind or stellar wind models. Nevertheless, for all scenarios, an efficient spin-down torque requires a rather strong dipolar component, which has been seldom observed in classical T Tauri stars. A better analysis of the torques acting on the protostar must take into account non-axisymmetric and multipolar magnetic components consistent with observations.Comment: 21 pages, 16 figures, accepted for publication in Astronomy & Astrophysic

    Jet launching and field advection in quasi-Keplerian discs

    Full text link
    The fact that self-confined jets are observed around black holes, neutron stars and young forming stars points to a jet launching mechanism independent of the nature of the central object, namely the surrounding accretion disc. The properties of Jet Emitting Discs (JEDs) are briefly reviewed. It is argued that, within an alpha prescription for the turbulence (anomalous viscosity and diffusivity), the steady-state problem has been solved. Conditions for launching jets are very stringent and require a large scale magnetic field BzB_z close to equipartition with the total (gas and radiation) pressure. The total power feeding the jets decreases with the disc thickness: fat ADAF-like structures with hrh\sim r cannot drive super-Alfv\'enic jets. However, there exist also hot, optically thin JED solutions that would be observationally very similar to ADAFs. Finally, it is argued that variations in the large scale magnetic BzB_z field is the second parameter required to explain hysteresis cycles seen in LMXBs (the first one would be M˙a\dot M_a).Comment: 4 pages, 1 figure, proceedings of IAU 275 "Jets at all scales" (Gustavo E. Romero, Rashid A. Sunyaev and Tomaso Belloni, eds

    Inflationary dynamics of kinetically-coupled gauge fields

    Full text link
    We investigate the inflationary dynamics of two kinetically-coupled massless U(1)U(1) gauge fields with time-varying kinetic-term coefficients. Ensuring that the system does not have strongly coupled regimes shrinks the parameter space. Also, we further restrict ourselves to systems that can be quantized using the standard creation, annihilation operator algebra. This second constraint limits us to scenarios where the system can be diagonalized into the sum of two decoupled, massless, vector fields with a varying kinetic-term coefficient. Such a system might be interesting for magnetogenesis because of how the strong coupling problem generalizes. We explore this idea by assuming that one of the gauge fields is the Standard Model U(1)U(1) field and that the other dark gauge field has no particles charged under its gauge group. We consider whether it would be possible to transfer a magnetic field from the dark sector, generated perhaps before the coupling was turned on, to the visible sector. We also investigate whether the simple existence of the mixing provides more opportunities to generate magnetic fields. We find that neither possibility works efficiently, consistent with the well-known difficulties in inflationary magnetogenesis.Comment: 17 pages, 0 figures. Matches JCAP versio

    Modelling multimodal passenger choices with stated preference data

    Get PDF
    Redland Shire Council has recently started the implementation of an Integrated Local Transport Plan (ILTP) that aims to reduce the car dependency by enhancing the usage of alternative modes of transport. A multi mode choice model is required that can forecast the travel behaviour across the region in order to achieve the targets set in ILTP. This paper presents the findings of a state-of-the-art literature review done on mode choice modelling and outlines the development and calibration of a model to investigate the travel behaviour of Redlands’ residents. The present study attempts to develop a nested logit model and calibrate it using data obtained from a stated preference (SP) survey to be conducted in the Shire. The model development will consider all the vital attributes of the travelling modes used in the study area including various public transit access modes. The possibility of combining SP and revealed preference (RP) data to calibrate the model using joint-estimation method will be further assessed. It is expected that the outcomes of the research will assist policy makers in the areas of public transport planning and the development of network for public transport access modes including walkways and cycleways
    corecore