31,153 research outputs found

    Dark Matter, Modified Gravity and the Mass of the Neutrino

    Full text link
    It has been suggested that Einstein's theory of General Relativity can be modified to accomodate mismatches between the gravitational field and luminous matter on a wide range of scales. Covariant theories of modified gravity generically predict the existence of extra degrees of freedom which may be interpreted as dark matter. We study a subclass of these theories where the overall energy density in these extra degrees of freedom is subdominant relative to the baryon density and show that they favour the presence of massive neutrinos. For some specific cases (such as a flat Universes with a cosmological constant) one finds a conservative lower bound on the neutrinos mass of mν>0.31m_\nu>0.31 eV.Comment: 5 pages, 2 figures, 2 tables, submitted to Phys. Rev.

    Global-String and Vortex Superfluids in a Supersymmetric Scenario

    Full text link
    The main goal of this work is to investigate the possibility of finding the supersymmetric version of the U(1)-global string model which behaves as a vortex-superfluid. To describe the superfluid phase, we introduce a Lorentz-symmetry breaking background that, in an approach based on supersymmetry, leads to a discussion on the relation between the violation of Lorentz symmetry and explicit soft supersymmetry breakings. We also study the relation between the string configuration and the vortex-superfluid phase. In the framework we settle down in terms of superspace and superfields, we actually establish a duality between the vortex degrees of freedom and the component fields of the Kalb-Ramond superfield. We make also considerations about the fermionic excitations that may appear in connection with the vortex formation.Comment: 9 pages. This version presented the relation between Lorentz symmetry violation by the background and the appearance of terms that explicitly break SUS

    On the origins of scaling corrections in ballistic growth models

    Full text link
    We study the ballistic deposition and the grain deposition models on two-dimensional substrates. Using the Kardar-Parisi-Zhang (KPZ) ansatz for height fluctuations, we show that the main contribution to the intrinsic width, which causes strong corrections to the scaling, comes from the fluctuations in the height increments along deposition events. Accounting for this correction in the scaling analysis, we obtained scaling exponents in excellent agreement with the KPZ class. We also propose a method to suppress these corrections, which consists in divide the surface in bins of size ε\varepsilon and use only the maximal height inside each bin to do the statistics. Again, scaling exponents in remarkable agreement with the KPZ class were found. The binning method allowed the accurate determination of the height distributions of the ballistic models in both growth and steady state regimes, providing the universal underlying fluctuations foreseen for KPZ class in 2+1 dimensions. Our results provide complete and conclusive evidences that the ballistic model belongs to the KPZ universality class in 2+12+1 dimensions. Potential applications of the methods developed here, in both numerics and experiments, are discussed.Comment: 8 pages, 7 figure

    A Bayesian estimate of the skewness of the Cosmic Microwave Background

    Get PDF
    We propose a formalism for estimating the skewness and angular power spectrum of a general Cosmic Microwave Background data set. We use the Edgeworth Expansion to define a non-Gaussian likelihood function that takes into account the anisotropic nature of the noise and the incompleteness of the sky coverage. The formalism is then applied to estimate the skewness of the publicly available 4 year Cosmic Background Explorer (COBE) Differential Microwave Radiometer data. We find that the data is consistent with a Gaussian skewness, and with isotropy. Inclusion of non Gaussian degrees of freedom has essentially no effect on estimates of the power spectrum, if each CC_\ell is regarded as a separate parameter or if the angular power spectrum is parametrized in terms of an amplitude (Q) and spectral index (n). Fixing the value of the angular power spectrum at its maxiumum likelihood estimate, the best fit skewness is S=6.5\pm6.0\times10^4(\muK)^3; marginalizing over Q the estimate of the skewness is S=6.5\pm8.4\times10^4(\muK)^3 and marginalizing over n one has S=6.5\pm8.5\times10^4(\muK)^3.Comment: submitted to Astrophysical Journal Letter
    corecore