32,759 research outputs found

    Exploring the consistency of the SF-6D

    Get PDF
    Objective: The six dimensional health state short form (SF-6D) was designed to be derived from the short-form 36 health survey (SF-36). The purpose of this research was to compare the SF-6D index values generated from the SF 36 (SF-6D(SF-36)) with those obtained from the SF-6D administered as an independent instrument (SF-6D(Ind)). The goal was to assess the consistency of respondents answers to these two methods of deriving the SF-6D. Methods: Data were obtained from a sample of the Portuguese population (n = 414). Agreement between the instruments was assessed on the basis of a descriptive system and their indexes. The analysis of the descriptive system was performed by using a global consistency index and an identically classified index. Agreement was also explored by using correlation coefficients. Parametric tests were used to identify differences between the indexes. Regression models were estimated to understand the relationship between them. Results: The SF-6D(Ind) generates higher values than does the SF-6D(SF-36), There were significant differences between the indexes across sociodemographic groups. There was a significant ceiling effect in the SF-6D(Ind) a but not in the SF-6D(SF-36). The correlation between the indexes was high but less than what was anticipated. The global consistency index identified the dimensions with larger differences. Considerable differences were found in two dimensions, possibly as a result of different item contexts. Further research is needed to fully understand the role of the different layouts and the length of the questionnaires in the respondents' answers. Conclusions: The results show that as the SF-6D was designed to derive utilities from the SF-36 it should be used in this way and not as an independent instrument.Fundacao para a Ciencia e a Tecnologia (FCT

    A model for Hopfions on the space-time S^3 x R

    Full text link
    We construct static and time dependent exact soliton solutions for a theory of scalar fields taking values on a wide class of two dimensional target spaces, and defined on the four dimensional space-time S^3 x R. The construction is based on an ansatz built out of special coordinates on S^3. The requirement for finite energy introduces boundary conditions that determine an infinite discrete spectrum of frequencies for the oscillating solutions. For the case where the target space is the sphere S^2, we obtain static soliton solutions with non-trivial Hopf topological charges. In addition, such hopfions can oscillate in time, preserving their topological Hopf charge, with any of the frequencies belonging to that infinite discrete spectrum.Comment: Enlarged version with the time-dependent solutions explicitly given. One reference and two eps figures added. 14 pages, late

    Integrable theories and loop spaces: fundamentals, applications and new developments

    Get PDF
    We review our proposal to generalize the standard two-dimensional flatness construction of Lax-Zakharov-Shabat to relativistic field theories in d+1 dimensions. The fundamentals from the theory of connections on loop spaces are presented and clarified. These ideas are exposed using mathematical tools familiar to physicists. We exhibit recent and new results that relate the locality of the loop space curvature to the diffeomorphism invariance of the loop space holonomy. These result are used to show that the holonomy is abelian if the holonomy is diffeomorphism invariant. These results justify in part and set the limitations of the local implementations of the approach which has been worked out in the last decade. We highlight very interesting applications like the construction and the solution of an integrable four dimensional field theory with Hopf solitons, and new integrability conditions which generalize BPS equations to systems such as Skyrme theories. Applications of these ideas leading to new constructions are implemented in theories that admit volume preserving diffeomorphisms of the target space as symmetries. Applications to physically relevant systems like Yang Mills theories are summarized. We also discuss other possibilities that have not yet been explored.Comment: 64 pages, 8 figure

    CMB Likelihood Functions for Beginners and Experts

    Full text link
    Although the broad outlines of the appropriate pipeline for cosmological likelihood analysis with CMB data has been known for several years, only recently have we had to contend with the full, large-scale, computationally challenging problem involving both highly-correlated noise and extremely large datasets (N>1000N > 1000). In this talk we concentrate on the beginning and end of this process. First, we discuss estimating the noise covariance from the data itself in a rigorous and unbiased way; this is essentially an iterated minimum-variance mapmaking approach. We also discuss the unbiased determination of cosmological parameters from estimates of the power spectrum or experimental bandpowers.Comment: Long-delayed submission. In AIP Conference Proceedings "3K Cosmology" held in Rome, Oct 5-10, 1998, edited by Luciano Maiani, Francesco Melchiorri and Nicola Vittorio, 343-347, New York, American Institute of Physics 199

    Molecular dynamics simulations of ballistic annihilation

    Full text link
    Using event-driven molecular dynamics we study one- and two-dimensional ballistic annihilation. We estimate exponents ξ\xi and γ\gamma that describe the long-time decay of the number of particles (n(t)tξn(t)\sim t^{-\xi}) and of their typical velocity (v(t)tγv(t)\sim t^{-\gamma}). To a good accuracy our results confirm the scaling relation ξ+γ=1\xi + \gamma =1. In the two-dimensional case our results are in a good agreement with those obtained from the Boltzmann kinetic theory.Comment: 4 pages; some changes; Physical Review E (in press

    Mean-field analysis of the majority-vote model broken-ergodicity steady state

    Get PDF
    We study analytically a variant of the one-dimensional majority-vote model in which the individual retains its opinion in case there is a tie among the neighbors' opinions. The individuals are fixed in the sites of a ring of size LL and can interact with their nearest neighbors only. The interesting feature of this model is that it exhibits an infinity of spatially heterogeneous absorbing configurations for LL \to \infty whose statistical properties we probe analytically using a mean-field framework based on the decomposition of the LL-site joint probability distribution into the nn-contiguous-site joint distributions, the so-called nn-site approximation. To describe the broken-ergodicity steady state of the model we solve analytically the mean-field dynamic equations for arbitrary time tt in the cases n=3 and 4. The asymptotic limit tt \to \infty reveals the mapping between the statistical properties of the random initial configurations and those of the final absorbing configurations. For the pair approximation (n=2n=2) we derive that mapping using a trick that avoids solving the full dynamics. Most remarkably, we find that the predictions of the 4-site approximation reduce to those of the 3-site in the case of expectations involving three contiguous sites. In addition, those expectations fit the Monte Carlo data perfectly and so we conjecture that they are in fact the exact expectations for the one-dimensional majority-vote model
    corecore