3 research outputs found

    New live attenuated tuberculosis vaccine MTBVAC induces trained immunity and confers protection against experimental lethal pneumonia

    Get PDF
    Among infectious diseases, tuberculosis is the leading cause of death worldwide, and represents a serious threat, especially in developing countries. The protective effects of Bacillus Calmette-Guerin (BCG), the current vaccine against tuberculosis, have been related not only to specific induction of T-cell immunity, but also with the long-term epigenetic and metabolic reprogramming of the cells from the innate immune system through a process termed trained immunity. Here we show that MTBVAC, a live attenuated strain of Mycobacterium tuberculosis, safe and immunogenic against tuberculosis antigens in adults and newborns, is also able to generate trained immunity through the induction of glycolysis and glutaminolysis and the accumulation of histone methylation marks at the promoters of proinflammatory genes, facilitating an enhanced response after secondary challenge with non-related bacterial stimuli. Importantly, these findings in human primary myeloid cells are complemented by a strong MTBVAC-induced heterologous protection against a lethal challenge with Streptococcus pneumoniae in an experimental murine model of pneumonia.M.G.N. was supported by an ERC Advanced grant (#833247) and by a Spinoza Grant of the Netherlands Organization for Scientific Research (https://erc.europa.eu/). UNIZAR Team was supported by Ministry of Science and Universities Grant RTI2018-097625-B-100 (http://www.ciencia.gob.es/portal/site/MICINN/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.S

    B. burgdorferisensu lato-induced inhibition of antigen presentation is mediated by RIP1 signaling resulting in impaired functional T cell responses towards Candida albicans

    No full text
    Antigen presentation is a crucial innate immune cell function that instructs adaptive immune cells. Loss of this pathway severely impairs the development of adaptive immune responses. To investigate whether B. burgdorferi sensu lato. spirochetes modulate the induction of an effective immune response, primary human PBMCs were isolated from healthy volunteers and stimulated with B. burgdorferi s.l. Through cell entry, TNF receptor I, and RIP1 signaling cascades, B. burgdorferi s.l. strongly downregulated genes and proteins involved in antigen presentation, specifically HLA-DM, MHC class II and CD74. Antigen presentation proteins were distinctively inhibited in monocyte subsets, monocyte-derived macrophages, and dendritic cells. When compared to a range of other pathogens, B. burgdorferi s.l.-induced suppression of antigen presentation appears to be specific. Inhibition of antigen presentation interfered with T-cell recognition of B. burgdorferi s.l., and memory T-cell responses against Candidaalbicans. Re-stimulation of PBMCs with the commensal microbe C.albicans following B. burgdorferi s.l. exposure resulted in significantly reduced IFN-γ, IL-17 and IL-22 production. These findings may explain why patients with Lyme borreliosis develop delayed adaptive immune responses. Unravelling the mechanism of B. burgdorferi s.l.-induced inhibition of antigen presentation, via cell entry, TNF receptor I, and RIP1 signaling cascades, explains the difficulty to diagnose the disease based on serology and to obtain an effective vaccine against Lyme borreliosis.</p

    induction of trained immunity in adherent human monocytes.

    No full text
    A growing number of studies show that innate immune cells can undergo functional reprogramming, facilitating a faster and enhanced response to heterologous secondary stimuli. This concept has been termed "trained immunity." We outline here a protocol to recapitulate this in vitro using adherent monocytes from consecutive isolation of peripheral blood mononuclear cells. The induction of trained immunity and the associated functional reprogramming of monocytes is described in detail using β-glucan (from Candida albicans) and Bacillus Calmette-Guérin as examples. For complete details on the use and execution of this protocol, please refer to Repnik et al. (2003) and Bekkering et al. (2016)
    corecore