26,295 research outputs found

    Trypanosomatids are common and diverse parasites of Drosophila

    Get PDF

    Graphene-based spin-pumping transistor

    Full text link
    We demonstrate with a fully quantum-mechanical approach that graphene can function as gate-controllable transistors for pumped spin currents, i.e., a stream of angular momentum induced by the precession of adjacent magnetizations, which exists in the absence of net charge currents. Furthermore, we propose as a proof of concept how these spin currents can be modulated by an electrostatic gate. Because our proposal involves nano-sized systems that function with very high speeds and in the absence of any applied bias, it is potentially useful for the development of transistors capable of combining large processing speeds, enhanced integration and extremely low power consumption

    Maxwell-Chern-Simons vortices in a CPT-odd Lorentz-violating Higgs Electrodynamics

    Get PDF
    We have studied BPS vortices in a CPT-odd and Lorentz-violating Maxwell-Chern-Simons-Higgs (MCSH) electrodynamics attained from the dimensional reduction of the Carroll-Field-Jackiw-Higgs model. The Lorentz-violating parameter induces a pronounced behavior at origin (for the magnetic/electric fields and energy density) which is absent in the MCSH vortices. For some combination of the Lorentz-violating coefficients there always exist a sufficiently large winding number n0n_{0} such that for all % |n|\geq |n_{0}| the magnetic field flips its signal, yielding two well defined regions with opposite magnetic flux. However, the total magnetic flux remains quantized and proportional to the winding number.Comment: Revtex style, 8 page

    Graphene as a non-magnetic spin-current lens

    Full text link
    In spintronics, the ability to transport magnetic information often depends on the existence of a spin current traveling between two different magnetic objects acting as source and probe. A large fraction of this information never reaches the probe and is lost because the spin current tends to travel omni-directionally. We propose that a curved boundary between a gated and a non-gated region within graphene acts as an ideal lens for spin currents despite being entirely of non-magnetic nature. We show as a proof of concept that such lenses can be utilized to redirect the spin current that travels away from a source onto a focus region where a magnetic probe is located, saving a considerable fraction of the magnetic information that would be otherwise lost.Comment: 9 pages, 3 figure

    Euler-Lagrange equations for composition functionals in calculus of variations on time scales

    Full text link
    In this paper we consider the problem of the calculus of variations for a functional which is the composition of a certain scalar function HH with the delta integral of a vector valued field ff, i.e., of the form H(abf(t,xσ(t),xΔ(t))Δt)H(\int_{a}^{b}f(t,x^{\sigma}(t),x^{\Delta}(t))\Delta t). Euler-Lagrange equations, natural boundary conditions for such problems as well as a necessary optimality condition for isoperimetric problems, on a general time scale, are given. A number of corollaries are obtained, and several examples illustrating the new results are discussed in detail.Comment: Submitted 10-May-2009 to Discrete and Continuous Dynamical Systems (DCDS-B); revised 10-March-2010; accepted 04-July-201

    Dynamic RKKY interaction between magnetic moments in graphene nanoribbons

    Get PDF
    Graphene has been identified as a promising material with numerous applications, particularly in spintronics. In this paper we investigate the peculiar features of spin excitations of magnetic units deposited on graphene nanoribbons and how they can couple through a dynamical interaction mediated by spin currents. We examine in detail the spin lifetimes and identify a pattern caused by vanishing density of states sites in pristine ribbons with armchair borders. Impurities located on these sites become practically invisible to the interaction, but can be made accessible by a gate voltage or doping. We also demonstrate that the coupling between impurities can be turned on or off using this characteristic, which may be used to control the transfer of information in transistor-like devices.Comment: 10 pages, 10 figure

    Dynamic RKKY interaction in graphene

    Full text link
    The growing interest in carbon-based spintronics has stimulated a number of recent theoretical studies on the RKKY interaction in graphene, based on which the energetically favourable alignment between magnetic moments embedded in this material can be calculated. The general consensus is that the strength of the RKKY interaction in graphene decays as 1/D3 or faster, where D is the separation between magnetic moments. Such an unusually fast decay for a 2-dimensional system suggests that the RKKY interaction may be too short ranged to be experimentally observed in graphene. Here we show in a mathematically transparent form that a far more long ranged interaction arises when the magnetic moments are taken out of their equilibrium positions and set in motion. We not only show that this dynamic version of the RKKY interaction in graphene decays far more slowly but also propose how it can be observed with currently available experimental methods.Comment: 7 pages, 2 figures, submitte

    Reguladores de crescimento na cultura do algodoeiro.

    Get PDF
    Existe certo antagonismo entre o crescimento (aumento da matéria seca) e o desenvolvimento (mudança de fase fenológica) do algodoeiro (Beltrão & Azevedo, 1993). Fatores do meio que promovem excessivo crescimento vegetativo, como, por exemplo, adequada disponibilidade de nutrientes e de água e condições climáticas favoráveis, implicam em efeitos negativos sobre a produção final. Em tais condições, o uso de regulador de crescimento torna-se indispensável (Kerby, 1982; Reddy et al., 1992), pois possibilita o controle do crescimento vegetativo, através da manipulação da arquitetura das plantas, sendo, atualmente, uma importante estratégia agronômica para o incremento da produtividade de algodão (Hodges et al., 1991)bitstream/item/24412/1/COT2006121.pdfDocumento on-line
    corecore