17 research outputs found

    VNbCrMo refractory high-entropy alloy for nuclear applications

    Get PDF
    Refractory high-entropy alloys (RHEAs) with high melting points and low neutron absorption cross-section are sought for generation-IV fission and fusion reactors. A high throughput computational screening tool, Alloy Search and Predict (ASAP), was used to identify promising RHEA candidates from over 1 million four-element equimolar combinations. The selected VNbCrMo RHEA was further studied by CALPHAD to predict phase formation, which was compared to an experimentally produced ingot aged at 1200 °C. The VNbCrMo RHEA was found to constitute a majority bcc phase, with a 6% area fraction of C15-Laves formed at interdendritic regions, in contrast to the predictions of single-phase. The prediction of the yield strength by a model based upon edge dislocation mechanisms indicated 2.1 GPa at room temperature and 850 MPa at 1000 °C for the equimolar single bcc phase. The hardness of the alloy with C15-Laves was 748 HV (yield strength ∼2.4 GPa). Finally, the macroscopic neutron absorption cross-section was modelled for a wide range of energies. Displacements per atom per year and activation calculations, up to 1000 years after 2 years of continuous operation, in typical fusion and fission reactor scenarios were also performed using the inventory code FISPACT-II. This work gives new insight into the phase stability and performance of the VNbCrMo RHEA, which is compared with a similar design concept alloy, to assess the potential of novel RHEAs for use in advanced nuclear applications.Fil: Ferreirós, Pedro Antonio. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: von Tiedemann, S. O.. The University Of Birmingham (tub);Fil: Parkes, N.. The University Of Birmingham (tub);Fil: Gurah, D.. The University Of Birmingham (tub);Fil: King, D. J. M.. Imperial College London; Reino UnidoFil: Norman, P.. The University Of Birmingham (tub);Fil: Gilbert, M. R.. The University Of Birmingham (tub);Fil: Knowles, A. J.. Imperial College London; Reino Unid

    Influence of precipitate and grain sizes on the brittle-to-ductile transition in Fe–Al–V bcc-L2<sub>1</sub> ferritic superalloys

    Get PDF
    The limiting factors to achieving a wide application of bcc-superalloys are the high brittle-to-ductile transition temperatures (BDTT). The understanding of the mechanisms controlling the BDTT and how to optimise the microstructure in polycrystalline bcc-superalloys remains a concern today. In the present work, the influence of grain and coherent precipitates sizes on strength and brittle-to-ductile transition temperature (BDTT) are studied in a Fe78Al10V12 (A2+L21) ferritic superalloy, toward application in high-efficiency power plants. Additionally, the A2 matrix behaviour was evaluated in a derived single-phase-bcc Fe84Al8V8 alloy. Thermal ageing and coarsening treatments were applied to produce samples with different precipitate and grain sizes. Tensile tests were carried out at different temperatures and strain rates to assess the variation of the yield stress. Charpy impact tests were used to measure the BDTT in both alloys, which was substantially reduced with grain size refinement, and precipitate coarsening. It was found that the increase in cleavage stress by precipitation strengthening follows the same behaviour that the increase in yield stress for coherent strengthened bcc-superalloys. Integration into a physical-based model, which identified a novel interplay with cleavage stress, provides enhanced BDTT predictive capability for ferritic superalloys.Fil: Ferreirós, Pedro Antonio. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Instituto Sabato; ArgentinaFil: Sterin, Uriel Alejandro. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Alonso, Paula Regina. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín. Instituto Sabato; ArgentinaFil: Knowles, A. J.. University Of Birmingham;Fil: Rubiolo, Gerardo Hector. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
    corecore