6 research outputs found

    Mineral bone disorder in chronic kidney disease: head-to-head comparison of the 5/6 nephrectomy and adenine models

    Get PDF
    Abstract\ud \ud Background\ud Experimental models are important to the understanding of the pathophysiology of, as well as the effects of therapy on, certain diseases. In the case of chronic kidney disease-mineral bone disorder, there are currently two models that are used in evaluating the disease: 5/6 nephrectomy (Nx) and adenine-induced renal failure (AIRF). However, the two models have never been compared in studies using animals maintained under similar conditions. Therefore, we compared these two models, focusing on the biochemical, bone histomorphometry, and vascular calcification aspects.\ud \ud \ud Methods\ud Wistar rats, initially fed identical diets, were divided into two groups: those undergoing 5/6 Nx (5/6Nx group) and those that were switched to an adenine-enriched diet (AIRF group). After 9 weeks, animals were sacrificed, and we conducted biochemical and bone histomorphometry analyses, as well as assessing vascular calcification.\ud \ud \ud Results\ud At sacrifice, the mean body weight was higher in the 5/6Nx group than in the AIRF group, as was the mean blood pressure. No differences were seen regarding serum phosphate, ionized calcium, intact parathyroid hormone (PTH), or fibroblast growth factor 23 (FGF23). However, creatinine clearance was lower and fractional excretion of phosphate (FeP) was higher in the AIRF group rats, which also had a more severe form of high-turnover bone disease. Vascular calcification, as evaluated through von Kossa staining, was not observed in any of the animals.\ud \ud \ud Conclusions\ud Overt vascular calcification was not seen in either model as applied in this study. Under similar conditions of diet and housing, the AIRF model produces a more severe form of bone disease than does 5/6 Nx. This should be taken into account when the choice is made between these models for use in preclinical studies.This study was supported by Fresenius Medical Care Deutschland GmbH,\ud Germany and Fapesp (grant 2008/53147-0). RMAM is supported by CNPQ,\ud Conselho Nacional de Desenvolvimento Científico e Tecnológico (grant\ud 303325/2010-0). It was presented in part at the ASN Kidney Week 2011

    Mineral bone disorder in chronic kidney disease: head-to-head comparison of the 5/6 nephrectomy and adenine models

    Get PDF
    Abstract Background Experimental models are important to the understanding of the pathophysiology of, as well as the effects of therapy on, certain diseases. In the case of chronic kidney disease-mineral bone disorder, there are currently two models that are used in evaluating the disease: 5/6 nephrectomy (Nx) and adenine-induced renal failure (AIRF). However, the two models have never been compared in studies using animals maintained under similar conditions. Therefore, we compared these two models, focusing on the biochemical, bone histomorphometry, and vascular calcification aspects. Methods Wistar rats, initially fed identical diets, were divided into two groups: those undergoing 5/6 Nx (5/6Nx group) and those that were switched to an adenine-enriched diet (AIRF group). After 9 weeks, animals were sacrificed, and we conducted biochemical and bone histomorphometry analyses, as well as assessing vascular calcification. Results At sacrifice, the mean body weight was higher in the 5/6Nx group than in the AIRF group, as was the mean blood pressure. No differences were seen regarding serum phosphate, ionized calcium, intact parathyroid hormone (PTH), or fibroblast growth factor 23 (FGF23). However, creatinine clearance was lower and fractional excretion of phosphate (FeP) was higher in the AIRF group rats, which also had a more severe form of high-turnover bone disease. Vascular calcification, as evaluated through von Kossa staining, was not observed in any of the animals. Conclusions Overt vascular calcification was not seen in either model as applied in this study. Under similar conditions of diet and housing, the AIRF model produces a more severe form of bone disease than does 5/6 Nx. This should be taken into account when the choice is made between these models for use in preclinical studies

    Effects of dietary phosphate on adynamic bone disease in rats with chronic kidney disease--role of sclerostin?

    Get PDF
    High phosphate intake is known to aggravate renal osteodystrophy along various pathogenetic pathways. Recent studies have raised the possibility that dysregulation of the osteocyte Wnt/β-catenin signaling pathway is also involved in chronic kidney disease (CKD)-related bone disease. We investigated the role of dietary phosphate and its possible interaction with this pathway in an experimental model of adynamic bone disease (ABD) in association with CKD and hypoparathyroidism. Partial nephrectomy (Nx) and total parathyroidectomy (PTx) were performed in male Wistar rats. Control rats with normal kidney and parathyroid function underwent sham operations. Rats were divided into three groups and underwent pair-feeding for 8 weeks with diets containing either 0.6% or 1.2% phosphate: sham 0.6%, Nx+PTx 0.6%, and Nx+PTx 1.2%. In the two Nx+PTx groups, serum creatinine increased and blood ionized calcium decreased compared with sham control group. They also presented hyperphosphatemia and reduced serum parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) levels. Fractional urinary excretion of phosphate increased in Nx+PTx 1.2% rats despite lower PTH and FGF23 levels than in sham group. These biochemical changes were accompanied by a decrease in bone formation rates. The Nx+PTx 1.2% group had lower bone volume (BV/TV), higher osteoblast and osteocyte apoptosis, and higher SOST and Dickkopf-1 gene expression than the Nx+PTx 0.6% group. Nx+PTx 0.6% rat had very low serum sclerostin levels, and Nx+PTx 1.2% had intermediate sclerostin levels compared with sham group. Finally, there was a negative correlation between BV/TV and serum sclerostin. These results suggest that high dietary phosphate intake decreases bone volume in an experimental model of CKD-ABD, possibly via changes in SOST expression through a PTH-independent mechanism. These findings could have relevance for the clinical setting of CKD-ABD in patients who low turnover bone disease might be attenuated by optimal control of phosphate intake and/or absorption
    corecore