11 research outputs found

    Large-scale air mass characteristics observed over the remote tropical Pacific Ocean during March-April 1999: Results from PEM-Tropics B field experiment

    Get PDF
    Eighteen long-range flights over the Pacific Ocean between 38° S to 20° N and 166° E to 90° W were made by the NASA DC-8 aircraft during the NASA Pacific Exploratory Mission (PEM) Tropics B conducted from March 6 to April 18, 1999. Two lidar systems were flown on the DC-8 to remotely measure vertical profiles of ozone (O3), water vapor (H2O), aerosols, and clouds from near the surface to the upper troposphere along their flight track. In situ measurements of a wide range of gases and aerosols were made on the DC-8 for comprehensive characterization of the air and for correlation with the lidar remote measurements. The transition from northeasterly flow of Northern Hemispheric (NH) air on the northern side of the Intertropical Convergence Zone (ITCZ) to generally easterly flow of Southern Hemispheric (SH) air south of the ITCZ was accompanied by a significant decrease in O3, carbon monoxide, hydrocarbons, and aerosols and an increase in H2O. Trajectory analyses indicate that air north of the ITCZ came from Asia and/or the United States, while the air south of the ITCZ had a long residence time over the Pacific, perhaps originating over South America several weeks earlier. Air south of the South Pacific Convergence Zone (SPCZ) came rapidly from the west originating over Australia or Africa. This air had enhanced O3 and aerosols and an associated decrease in H2O. Average latitudinal and longitudinal distributions of O3 and H2O were constructed from the remote and in situ O3 and H2O data, and these distributions are compared with results from PEM-Tropics A conducted in August-October 1996. During PEM-Tropics B, low O3 air was found in the SH across the entire Pacific Basin at low latitudes. This was in strong contrast to the photochemically enhanced O3 levels found across the central and eastern Pacific low latitudes during PEM-Tropics A. Nine air mass types were identified for PEM-Tropics B based on their O3, aerosols, clouds, and potential vorticity characteristics. The data from each flight were binned by altitude according to air mass type, and these results showed the relative observational frequency of the different air masses as a function of altitude in seven regions over the Pacific. The average chemical composition of the major air mass types was determined from in situ measurements in the NH and SH, and these results provided insight into the origin, lifetime, and chemistry of the air in these regions. Copyright 2001 by the American Geophysical Union

    Modeling regional aerosol variability over California and its sensitivity to emissions and long-range transport during the 2010 CalNex and CARES campaigns

    Get PDF
    Abstract. The performance of the Weather Research and Forecasting regional model with chemistry (WRF-Chem) in simulating the spatial and temporal variations in aerosol mass, composition, and size over California is quantified using measurements collected during the California Nexus of Air Quality and Climate Experiment (CalNex) and the Carbonaceous Aerosol and Radiative Effects Study (CARES) conducted during May and June of 2010. The extensive meteorological, trace gas, and aerosol measurements collected at surface sites and along aircraft and ship transects during CalNex and CARES were combined with operational monitoring network measurements to create a single dataset that was used to evaluate the one configuration of the model. Simulations were performed that examined the sensitivity of regional variations in aerosol concentrations to anthropogenic emissions and to long-range transport of aerosols into the domain obtained from a global model. The configuration of WRF-Chem used in this study is shown to reproduce the overall synoptic conditions, thermally-driven circulations, and boundary layer structure observed in region that controls the transport and mixing of trace gases and aerosols. However, sub-grid scale variability in the meteorology and emissions as well as uncertainties in the treatment of secondary organic aerosol chemistry likely contribute to errors at a primary surface sampling site located at the edge of the Los Angeles basin. Differences among the sensitivity simulations demonstrate that the aerosol layers over the central valley detected by lidar measurements likely resulted from lofting and recirculation of local anthropogenic emissions along the Sierra Nevada. Reducing the default emissions inventory by 50% led to an overall improvement in many simulated trace gases and black carbon aerosol at most sites and along most aircraft flight paths; however, simulated organic aerosol was closer to observed when there were no adjustments to the primary organic aerosol emissions. The model performance for some aerosol species was not uniform over the region, and we found that sulfate was better simulated over northern California whereas nitrate was better simulated over southern California. While the overall spatial and temporal variability of aerosols and their precursors were simulated reasonably well, we show cases where the local transport of some aerosol plumes were either too slow or too fast, which adversely affects the statistics regarding the differences between observed and simulated quantities. Comparisons with lidar and in-situ measurements indicate that long-range transport of aerosols from the global model was likely too high in the free troposphere even though their concentrations were relatively low. This bias led to an over-prediction in aerosol optical depth by as much as a factor of two that offset the under-predictions of boundary-layer extinction resulting primarily from local emissions. Lowering the boundary conditions of aerosol concentrations by 50% greatly reduced the bias in simulated aerosol optical depth for all regions of California. This study shows that quantifying regional-scale variations in aerosol radiative forcing and determining the relative role of emissions from local and distant sources is challenging during "clean" conditions and that a wide array of measurements are needed to ensure model predictions are correct for the right reasons. In this regard, the combined CalNex and CARES datasets are an ideal testbed that can be used to evaluate aerosol models in great detail and develop improved treatments for aerosol processes

    An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol–cloud–radiation interactions in the southeast Atlantic basin

    Get PDF
    This is the final version. Available on open access from the European Geosciences Union via the DOI in this recordData availability: All ORACLES data are accessible via the digital object identifiers (DOIs) provided under ORACLES Science Team (2020a–d) references: https://doi.org/10.5067/Suborbital/ORACLES/P3/2018_V2 (ORACLES Science Team, 2020a), https://doi.org/10.5067/Suborbital/ORACLES/P3/2017_V2 (ORACLES Science Team, 2020b), https://doi.org/10.5067/Suborbital/ORACLES/P3/2016_V2 (ORACLES Science Team, 2020c), and https://doi.org/10.5067/Suborbital/ORACLES/ER2/2016_V2 (ORACLES Science Team, 2020d). The only exceptions are noted as footnotes to Table B2.Southern Africa produces almost a third of the Earth's biomass burning (BB) aerosol particles, yet the fate of these particles and their influence on regional and global climate is poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA EVS-2 (Earth Venture Suborbital-2) investigation with three intensive observation periods designed to study key atmospheric processes that determine the climate impacts of these aerosols. During the Southern Hemisphere winter and spring (June–October), aerosol particles reaching 3–5 km in altitude are transported westward over the southeast Atlantic, where they interact with one of the largest subtropical stratocumulus (Sc) cloud decks in the world. The representation of these interactions in climate models remains highly uncertain in part due to a scarcity of observational constraints on aerosol and cloud properties, as well as due to the parameterized treatment of physical processes. Three ORACLES deployments by the NASA P-3 aircraft in September 2016, August 2017, and October 2018 (totaling ∼350 science flight hours), augmented by the deployment of the NASA ER-2 aircraft for remote sensing in September 2016 (totaling ∼100 science flight hours), were intended to help fill this observational gap. ORACLES focuses on three fundamental science themes centered on the climate effects of African BB aerosols: (a) direct aerosol radiative effects, (b) effects of aerosol absorption on atmospheric circulation and clouds, and (c) aerosol–cloud microphysical interactions. This paper summarizes the ORACLES science objectives, describes the project implementation, provides an overview of the flights and measurements in each deployment, and highlights the integrative modeling efforts from cloud to global scales to address science objectives. Significant new findings on the vertical structure of BB aerosol physical and chemical properties, chemical aging, cloud condensation nuclei, rain and precipitation statistics, and aerosol indirect effects are emphasized, but their detailed descriptions are the subject of separate publications. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project and the dataset it produced.NAS
    corecore