32 research outputs found

    Woolly apple aphid Eriosoma lanigerum Hausmann ecology and its relationship with climatic variables and natural enemies in Mediterranean areas

    Get PDF
    A multilateral approach that includes both biotic and climatic data was developed to detect the main variables that affect the ecology and population dynamics of woolly apple aphid Eriosoma lanigerum (Hausmann). Crawlers migrated up and down the trunk mainly from spring to autumn and horizontal migration through the canopy was observed from May to August. Winter temperatures did not kill the canopy colonies, and both canopy and root colonies are the source of reinfestations in Mediterranean areas. Thus, control measures should simultaneously address roots and canopy. European earwigs Forficula auricularia (Linnaeus) were found to reduce the survival of overwintering canopy colonies up to June, and this can allow their later control by the parasitoid Aphelinus mali (Haldeman) from summer to fall. Preliminary models to predict canopy infestations were developed.info:eu-repo/semantics/publishedVersio

    Ripening-related cell wall modifications in olive (Olea europaea L.) fruit: A survey of nine genotypes

    Get PDF
    The production of olive (Olea europaea L.) is very important economically in many areas of the world, and particularly in countries around the Mediterranean basin. Ripening-associated modifications in cell wall composition and structure of fruits play an important role in attributes like firmness or susceptibility to infestations, rots and mechanical damage, but limited information on these aspects is currently available for olive. In this work, cell wall metabolism was studied in fruits from nine olive cultivars (‘Arbequina’, ‘Argudell’, ‘Empeltre’, ‘Farga’, ‘Manzanilla’, ‘Marfil’, ‘Morrut’, ‘Picual’ and ‘Sevillenca’) picked at three maturity stages (green, turning and ripe). Yields of alcohol-insoluble residue (AIR) recovered from fruits, as well as calcium content in fruit pericarp, decreased along ripening. Cultivar-specific diversity was observed in time-course change patterns of enzyme activity, particularly for those acting on arabinosyl- and galactosyl-rich pectin side chains. Even so, fruit firmness levels were associated to higher pectin methylesterase (PME) activity and calcium contents. In turn, fruit firmness correlated inversely with ascorbate content and with α-L-arabinofuranosidase (AFase) and β-galactosidase (β-Gal) activities, resulting in preferential loss of neutral sugars from cell wall polymers.info:eu-repo/semantics/acceptedVersio

    Combined analysis of primary metabolites and phenolic compounds to authenticate commercial monovarietal peach purees and pear juices

    Get PDF
    Here we authenticated single-varietal peach purees and pear juices on the basis of primary metabolite and phenolic compound analysis by Proton Nuclear Magnetic Resonance (1H-NMR) and Ultra Performance Liquid Chromatography coupled to Photodiode Array and Tandem Mass Spectrometry (UPLC-PDA-MS/MS), respectively. After suitable preprocessing, the 1H-NMR and chromatographic data were evaluated by principal component analysis (PCA). The PCA combining data from primary metabolites and phenolic compounds allowed the separation of the clusters in all cases, allowing discrimination of processed and unprocessed peach purees, both separately and pooled. The PCA of primary metabolites allowed the cluster separation of purees of distinct peach varieties but not between processed and non-processed purees. The PCA of phenolic compounds allowed better cluster separation than of primary metabolites. For pear juices, both PCA approaches allowed satisfactory discrimination of Alejandrina, Conference, and Blanquilla cultivars. These approaches may help to better control cultivar authenticity in fruit products. It could therefore contribute to the development of a process to achieve products characterized by a quality characteristic of a given cultivar.This research was funded by the Catalan Government, grant number [2017 SGR 828]
    corecore