2 research outputs found

    The search for black hole binaries using a genetic algorithm

    Full text link
    In this work we use genetic algorithm to search for the gravitational wave signal from the inspiralling massive Black Hole binaries in the simulated LISA data. We consider a single signal in the Gaussian instrumental noise. This is a first step in preparation for analysis of the third round of the mock LISA data challenge. We have extended a genetic algorithm utilizing the properties of the signal and the detector response function. The performance of this method is comparable, if not better, to already existing algorithms.Comment: 11 pages, 4 figures, proceeding for GWDAW13 (Puerto Rico

    The Mock LISA Data Challenges: from Challenge 3 to Challenge 4

    Full text link
    The Mock LISA Data Challenges are a program to demonstrate LISA data-analysis capabilities and to encourage their development. Each round of challenges consists of one or more datasets containing simulated instrument noise and gravitational waves from sources of undisclosed parameters. Participants analyze the datasets and report best-fit solutions for the source parameters. Here we present the results of the third challenge, issued in Apr 2008, which demonstrated the positive recovery of signals from chirping Galactic binaries, from spinning supermassive--black-hole binaries (with optimal SNRs between ~ 10 and 2000), from simultaneous extreme-mass-ratio inspirals (SNRs of 10-50), from cosmic-string-cusp bursts (SNRs of 10-100), and from a relatively loud isotropic background with Omega_gw(f) ~ 10^-11, slightly below the LISA instrument noise.Comment: 12 pages, 2 figures, proceedings of the 8th Edoardo Amaldi Conference on Gravitational Waves, New York, June 21-26, 200
    corecore