81 research outputs found

    Combinatorial substitutions and sofic tilings

    Full text link
    A combinatorial substitution is a map over tilings which allows to define sets of tilings with a strong hierarchical structure. In this paper, we show that such sets of tilings are sofic, that is, can be enforced by finitely many local constraints. This extends some similar previous results (Mozes'90, Goodman-Strauss'98) in a much shorter presentation.Comment: 17 pages, 16 figures. In proceedings of JAC 201

    Stochastic Flips on Two-letter Words

    Get PDF
    This paper introduces a simple Markov process inspired by the problem of quasicrystal growth. It acts over two-letter words by randomly performing \emph{flips}, a local transformation which exchanges two consecutive different letters. More precisely, only the flips which do not increase the number of pairs of consecutive identical letters are allowed. Fixed-points of such a process thus perfectly alternate different letters. We show that the expected number of flips to converge towards a fixed-point is bounded by O(n3)O(n^3) in the worst-case and by O(n5/2ln⁥n)O(n^{5/2}\ln{n}) in the average-case, where nn denotes the length of the initial word.Comment: ANALCO'1

    Local Rules for Computable Planar Tilings

    Full text link
    Aperiodic tilings are non-periodic tilings characterized by local constraints. They play a key role in the proof of the undecidability of the domino problem (1964) and naturally model quasicrystals (discovered in 1982). A central question is to characterize, among a class of non-periodic tilings, the aperiodic ones. In this paper, we answer this question for the well-studied class of non-periodic tilings obtained by digitizing irrational vector spaces. Namely, we prove that such tilings are aperiodic if and only if the digitized vector spaces are computable.Comment: In Proceedings AUTOMATA&JAC 2012, arXiv:1208.249

    Density of Binary Disc Packings: Playing with Stoichiometry

    Full text link
    We consider the packings in the plane of discs of radius 11 and 2−1\sqrt{2}-1 when the proportions of each type of disc are fixed. The maximal density is determined and the densest packings are described. A phase separation phenomenon appears when there is an excess of small discs.Comment: The code used in the proof is included in the arxiv (check.cpp

    Geometrical Penrose Tilings are characterized by their 1-atlas

    Full text link
    Rhombus Penrose tilings are tilings of the plane by two decorated rhombi such that the decoration match at the junction between two tiles (like in a jigsaw puzzle). In dynamical terms, they form a tiling space of finite type. If we remove the decorations, we get, by definition, a sofic tiling space that we here call geometrical Penrose tilings. Here, we show how to compute the patterns of a given size which appear in these tilings by two different method: one based on the substitutive structure of the Penrose tilings and the other on their definition by the cut and projection method. We use this to prove that the geometrical Penrose tilings are characterized by a small set of patterns called vertex-atlas, i.e., they form a tiling space of finite type. Though considered as folk, no complete proof of this result has been published, to our knowledge
    • 

    corecore