309 research outputs found

    Dynamically controlled toroidal and ring-shaped magnetic traps

    Full text link
    We present traps with toroidal (T2)(T^{2}) and ring-shaped topologies, based on adiabatic potentials for radio-frequency dressed Zeeman states in a ring-shaped magnetic quadrupole field. Simple adjustment of the radio-frequency fields provides versatile possibilities for dynamical parameter tuning, topology change, and controlled potential perturbation. We show how to induce toroidal and poloidal rotations, and demonstrate the feasibility of preparing degenerate quantum gases with reduced dimensionality and periodic boundary conditions. The great level of dynamical and even state dependent control is useful for atom interferometry.Comment: 6 pages, 4 figures. Paragraphs on gravity compensation and expected trap lifetimes adde

    How many independent bets are there?

    Full text link
    The benefits of portfolio diversification is a central tenet implicit to modern financial theory and practice. Linked to diversification is the notion of breadth. Breadth is correctly thought of as the number of in- dependent bets available to an investor. Conventionally applications us- ing breadth frequently assume only the number of separate bets. There may be a large discrepancy between these two interpretations. We uti- lize a simple singular-value decomposition (SVD) and the Keiser-Gutman stopping criterion to select the integer-valued effective dimensionality of the correlation matrix of returns. In an emerging market such as South African we document an estimated breadth that is considerably lower than anticipated. This lack of diversification may be because of market concentration, exposure to the global commodity cycle and local currency volatility. We discuss some practical extensions to a more statistically correct interpretation of market breadth, and its theoretical implications for both global and domestic investors.Comment: Less technical rewrite. 12 Pages, 6 Figures (.eps

    High quality anti-relaxation coating material for alkali atom vapor cells

    Full text link
    We present an experimental investigation of alkali atom vapor cells coated with a high quality anti-relaxation coating material based on alkenes. The prepared cells with single compound alkene based coating showed the longest spin relaxation times which have been measured up to now with room temperature vapor cells. Suggestions are made that chemical binding of a cesium atom and an alkene molecule by attack to the C=C bond plays a crucial role in such improvement of anti-relaxation coating quality

    Two-dimensional array of microtraps with atomic shift register on a chip

    Get PDF
    Arrays of trapped atoms are the ideal starting point for developing registers comprising large numbers of physical qubits for storing and processing quantum information. One very promising approach involves neutral atom traps produced on microfabricated devices known as atom chips, as almost arbitrary trap configurations can be realised in a robust and compact package. Until now, however, atom chip experiments have focused on small systems incorporating single or only a few individual traps. Here we report experiments on a two-dimensional array of trapped ultracold atom clouds prepared using a simple magnetic-film atom chip. We are able to load atoms into hundreds of tightly confining and optically resolved array sites. We then cool the individual atom clouds in parallel to the critical temperature required for quantum degeneracy. Atoms are shuttled across the chip surface utilising the atom chip as an atomic shift register and local manipulation of atoms is implemented using a focused laser to rapidly empty individual traps.Comment: 6 pages, 4 figure

    Robust Estimators in Generalized Pareto Models

    Full text link
    This paper deals with optimally-robust parameter estimation in generalized Pareto distributions (GPDs). These arise naturally in many situations where one is interested in the behavior of extreme events as motivated by the Pickands-Balkema-de Haan extreme value theorem (PBHT). The application we have in mind is calculation of the regulatory capital required by Basel II for a bank to cover operational risk. In this context the tail behavior of the underlying distribution is crucial. This is where extreme value theory enters, suggesting to estimate these high quantiles parameterically using, e.g. GPDs. Robust statistics in this context offers procedures bounding the influence of single observations, so provides reliable inference in the presence of moderate deviations from the distributional model assumptions, respectively from the mechanisms underlying the PBHT.Comment: 26pages, 6 figure

    The RTU Graduate School Executive Master's Program for school year 2011-2012 as viewed by its respondents

    Get PDF
    This study was conducted to ascertain the views and opinions of the faculty and personnel as recipients of the Rizal Technological University (RTU) Graduate School Executive Master's program as to its reasons for availment, importance of the core and major subjects of the curriculum, lecturers' professional skills, duration/time allotment, level of satisfaction, significant difference of the two programs, problem encountered and gathered possible solutions to the problems; determine whether the Executive Master's Program was able to realize its goals and objectives and find out the overall impression of the recipients about the Executive Master's Program. A total of fifty (50) RTU faculty and personnel graduated from this Executive Master's program, twenty six (26) Master of Arts in Education (MAEd) and twenty four (24) Master of Arts in Engineering (MAE)

    Nonlinear atom interferometer surpasses classical precision limit

    Full text link
    Interference is fundamental to wave dynamics and quantum mechanics. The quantum wave properties of particles are exploited in metrology using atom interferometers, allowing for high-precision inertia measurements [1, 2]. Furthermore, the state-of-the-art time standard is based on an interferometric technique known as Ramsey spectroscopy. However, the precision of an interferometer is limited by classical statistics owing to the finite number of atoms used to deduce the quantity of interest [3]. Here we show experimentally that the classical precision limit can be surpassed using nonlinear atom interferometry with a Bose-Einstein condensate. Controlled interactions between the atoms lead to non-classical entangled states within the interferometer; this represents an alternative approach to the use of non-classical input states [4-8]. Extending quantum interferometry [9] to the regime of large atom number, we find that phase sensitivity is enhanced by 15 per cent relative to that in an ideal classical measurement. Our nonlinear atomic beam splitter follows the "one-axis-twisting" scheme [10] and implements interaction control using a narrow Feshbach resonance. We perform noise tomography of the quantum state within the interferometer and detect coherent spin squeezing with a squeezing factor of -8.2dB [11-15]. The results provide information on the many-particle quantum state, and imply the entanglement of 170 atoms [16]

    The Nylon Scintillator Containment Vessels for the Borexino Solar Neutrino Experiment

    Get PDF
    Borexino is a solar neutrino experiment designed to observe the 0.86 MeV Be-7 neutrinos emitted in the pp cycle of the sun. Neutrinos will be detected by their elastic scattering on electrons in 100 tons of liquid scintillator. The neutrino event rate in the scintillator is expected to be low (~0.35 events per day per ton), and the signals will be at energies below 1.5 MeV, where background from natural radioactivity is prominent. Scintillation light produced by the recoil electrons is observed by an array of 2240 photomultiplier tubes. Because of the intrinsic radioactive contaminants in these PMTs, the liquid scintillator is shielded from them by a thick barrier of buffer fluid. A spherical vessel made of thin nylon film contains the scintillator, separating it from the surrounding buffer. The buffer region itself is divided into two concentric shells by a second nylon vessel in order to prevent inward diffusion of radon atoms. The radioactive background requirements for Borexino are challenging to meet, especially for the scintillator and these nylon vessels. Besides meeting requirements for low radioactivity, the nylon vessels must also satisfy requirements for mechanical, optical, and chemical properties. The present paper describes the research and development, construction, and installation of the nylon vessels for the Borexino experiment

    Diameters in preferential attachment models

    Get PDF
    In this paper, we investigate the diameter in preferential attachment (PA-) models, thus quantifying the statement that these models are small worlds. The models studied here are such that edges are attached to older vertices proportional to the degree plus a constant, i.e., we consider affine PA-models. There is a substantial amount of literature proving that, quite generally, PA-graphs possess power-law degree sequences with a power-law exponent \tau>2. We prove that the diameter of the PA-model is bounded above by a constant times \log{t}, where t is the size of the graph. When the power-law exponent \tau exceeds 3, then we prove that \log{t} is the right order, by proving a lower bound of this order, both for the diameter as well as for the typical distance. This shows that, for \tau>3, distances are of the order \log{t}. For \tau\in (2,3), we improve the upper bound to a constant times \log\log{t}, and prove a lower bound of the same order for the diameter. Unfortunately, this proof does not extend to typical distances. These results do show that the diameter is of order \log\log{t}. These bounds partially prove predictions by physicists that the typical distance in PA-graphs are similar to the ones in other scale-free random graphs, such as the configuration model and various inhomogeneous random graph models, where typical distances have been shown to be of order \log\log{t} when \tau\in (2,3), and of order \log{t} when \tau>3

    Quantum memory for entangled two-mode squeezed states

    Full text link
    A quantum memory for light is a key element for the realization of future quantum information networks. Requirements for a good quantum memory are (i) versatility (allowing a wide range of inputs) and (ii) true quantum coherence (preserving quantum information). Here we demonstrate such a quantum memory for states possessing Einstein-Podolsky-Rosen (EPR) entanglement. These multi-photon states are two-mode squeezed by 6.0 dB with a variable orientation of squeezing and displaced by a few vacuum units. This range encompasses typical input alphabets for a continuous variable quantum information protocol. The memory consists of two cells, one for each mode, filled with cesium atoms at room temperature with a memory time of about 1msec. The preservation of quantum coherence is rigorously proven by showing that the experimental memory fidelity 0.52(2) significantly exceeds the benchmark of 0.45 for the best possible classical memory for a range of displacements.Comment: main text 5 pages, supplementary information 3 page
    • …
    corecore