166 research outputs found

    High Fibre Diets and Alzheimer\u27s Disease

    Get PDF
    The convergence of diet and AD may be related to the effects of phytosterols since plasma cholesterol is closely linked and regulated by phytosterols. Dietary fibre modifications that are low in fat and glucose reduce the risk for AD by not only effecting cell membranes and nutrient sensing G coupled receptors but also by regulating number of nuclear receptors such as histone deacetylases (HDAC) and peroxisome proliferator activated receptors (PPAR) that control glucose, fatty acids and cholesterol and have significant effects on the brain cholesterol homeostasis and amyloidosis. The peripheral sink Aβ hypothesis indicates that the peripheral clearance of Aβ and its regulation by dietary phytosterols is of substantial interest since it may delay hypercholesterolemia and the early onset of amyloid plaque development. Liver disease has been of central importance with aging and programmed cell death pathways. Nutritional therapy has emerged as a novel approach to control appetite and the role of nutrigenomics as an early nutritional therapy may assist genes to delay liver and brain diseases such as Parkinson’s disease (PD) and Huntington’s disease (HD) that are associated with aging. The understanding of phytosterols and the role of these lipids in drug therapy such as cholesterol lowering drugs may provide molecular mechanisms that are involved in the regulation of cell Aβ clearance and metabolism. High fibre diets also contain various fatty acids such as the short chain fatty acids (SCFA) and the understanding of synergistic effects of SCFA and phytosterols in glucose regulation and cholesterol homeostasisis important to our understanding of diet, lifestyle and drugs in relation to peripheral amyloidosis and gene expression that play an early role in the development of AD

    Effects of food gums and pre-drying on fat content of fabricated fried chips

    Get PDF
    © 2020 Institute of Food Science and Technology Deep-frying contributes to the unique taste and texture of fried products. However, they are low in nutritional value. Food industries actively trying to find ways to reduce the fat content while maintaining organoleptic properties of fried foods. In this work, effects of pre-drying and adding food gums on the moisture and fat contents of chips were evaluated. The chips were pre-dried for 60 and 90 min, and gellan gum, guar gum, methylcellulose and xanthan gum were added at the concentration of 0.25, 0.75, 1 and 2 % w/w. The xanthan gum was the most effective gum for fat reduction. The addition of 0.25 % w/w xanthan gum and at 90 min pre-drying reduced the fat content from 20 % (control) to 15 % w/w. The results also indicated that the reduction of moisture content after frying was not affected by the type of gums but the method of pre-drying

    Effect of goji berry on the formation of extracellular senile plaques of Alzheimer\u27s disease

    Get PDF
    BACKGROUND: Alzheimer\u27s disease (AD) is the most common neurodegenerative disease and a major source of morbidity and mortality. Currently, no therapy nor drug can cure or modify AD progression, but recent studies suggest that nutritional compounds in certain foods can delay or prevent the onset of AD. Diets with high antioxidants is one of the examples which is believed to influence AD pathogenesis through direct effect on amyloid beta levels. Compared to other fruits and vegetables, goji berry (GB) has high levels of polyphenolic substances with antioxidant activities which have shown some positive effects on cognitive function while its mechanism on neuroprotection is yet to be explored. We investigated whether GB would decrease the quantity of amyloid beta in cell culture model of AD. OBJECTIVE: To assess the protective effects of GB against amyloid beta toxicity in M17 cells using different techniques. METHODS: Goji berry powder (GBP) at different concentrations was treated with 20 μM amyloid beta-induced neuronal cells. MTS assay (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfophenyl)-2H-tetrazolium), bicinchoninic acid (BCA) assay, Western blot analysis, enzyme-linked immunosorbent assay (ELISA) and atomic force microscopy (AFM) were performed to identify how GB affected amyloid beta. RESULTS: MTS assay indicated that GBP significantly increased cell viability up to 105% when GBP was at 1.2 μg/ mL. Western blot showed significant reduction of amyloid beta up to 20% in cells treated with 1.5 μg/ mL GBP. GBP at 1.5 μg/ mL was the most effective concentration with 17% reduction of amyloid beta in amyloid beta-induced neuronal cells compared to control (amyloid beta only) based on ELISA results. AFM images further confirmed increasing GBP concentration led to decreased aggregation of amyloid beta. CONCLUSION: GB can be a promising anti-aging agent and warrants further investigating due to its effect on reduction of amyloid beta toxicity

    Lipoprotein biosynthesis in the larvae of the tobacco hornworm, Manduca-sexta

    Get PDF
    Lipoprotein biosynthesis in larvae of the tobacco hornworm (Manduca sexta) was investigated. By immunoblotting, it was shown that the apoproteins are present in the fat body, but not in the midgut. Fat body incubated in vitro with [35S]methionine secreted labeled apoproteins. However, when the density of the secreted particle was determined, it was found at 1.24-1.28 g/ml instead of 1.15 g/ml, which is the density of the circulating lipoprotein. Lipid analysis of immunoprecipitated lipoprotein secreted by the fat body showed a phospholipid/diacylglycerol ratio of 8.3 rather than 0.9, the ratio found in the circulating lipoprotein. When labeled oleic acid or triolein was fed to larvae, it was found that greater than 98% of the label in the circulating lipoprotein was in diacylglycerol. In studies using animals raised on a fat-free diet, it was shown that the circulating lipoprotein has properties comparable to those of the material secreted in vitro by the fat body and that this diacylglycerol-poor particle can be converted to the normal lipoprotein by feeding a bolus of triolein. These data support the hypothesis that the fat body makes and secretes a "nascent" lipoprotein which contains apoproteins and phospholipid, but is devoid of diacylglycerol. The diacylglycerol is then picked up from the midgut to complete assembly of the mature circulating lipoprotein

    Wound healing and blastema formation in regenerating digit tips of adult mice

    Get PDF
    AbstractAmputation of the distal region of the terminal phalanx of mice causes an initial wound healing response followed by blastema formation and the regeneration of the digit tip. Thus far, most regeneration studies have focused in embryonic or neonatal models and few studies have examined adult digit regeneration. Here we report on studies that include morphological, immunohistological, and volumetric analyses of adult digit regeneration stages. The regenerated digit is grossly similar to the original, but is not a perfect replacement. Re-differentiation of the digit tip occurs by intramembranous ossification forming a trabecular bone network that replaces the amputated cortical bone. The digit blastema is comprised of proliferating cells that express vimentin, a general mesenchymal marker, and by comparison to mature tissues, contains fewer endothelial cells indicative of reduced vascularity. The majority of blastemal cells expressing the stem cell marker SCA-1, also co-express the endothelial marker CD31, suggesting the presence of endothelial progenitor cells. Epidermal closure during wound healing is very slow and is characterized by a failure of the wound epidermis to close across amputated bone. Instead, the wound healing phase is associated with an osteoclast response that degrades the stump bone allowing the wound epidermis to undercut the distal bone resulting in a novel re-amputation response. Thus, the regeneration process initiates from a level that is proximal to the original plane of amputation

    Potential of sorghum polyphenols to prevent and treat Alzheimer\u27s disease: A review article

    Get PDF
    Alzheimer’s disease (AD) is characterized by the excessive deposition of extracellular amyloid-beta peptide (Aβ) and the build-up of intracellular neurofibrillary tangles containing hyperphosphorylated tau proteins. This leads to neuronal damage, cell death and consequently results in memory and learning impairments leading to dementia. Although the exact cause of AD is not yet clear, numerous studies indicate that oxidative stress, inflammation, and mitochondrial dysfunction significantly contribute to its onset and progression. There is no effective therapeutic approach to stop the progression of AD and its associated symptoms. Thus, early intervention, preferably, pre-clinically when the brain is not significantly affected, is a better option for effective treatment. Natural polyphenols (PP) target multiple AD-related pathways such as protecting the brain from Aβ and tau neurotoxicity, ameliorating oxidative damage and mitochondrial dysfunction. Among natural products, the cereal crop sorghum has some unique features. It is one of the major global grain crops but in the developed world, it is primarily used as feed for farm animals. A broad range of PP, including phenolic acids, flavonoids, and condensed tannins are present in sorghum grain including some classes such as proanthocyanidins that are rarely found in others plants. Pigmented varieties of sorghum have the highest polyphenolic content and antioxidant activity which potentially makes their consumption beneficial for human health through different pathways such as oxidative stress reduction and thus the prevention and treatment of neurodegenerative diseases. This review summarizes the potential of sorghum PP to beneficially affect the neuropathology of AD

    Culture-independent analyses reveal novel Anaerolineaceae as abundant primary fermenters in anaerobic digesters treating waste activated sludge:Genomic insights into the A6 phylotype

    Get PDF
    Anaerobic digestion for biogas production is reliant on the tightly coupled synergistic activities of complex microbial consortia. Members of the uncultured A6 phylotype, within the phylum Chloroflexi, are among the most abundant genus-level-taxa of mesophilic anaerobic digester systems treating primary and surplus sludge from wastewater treatment plants, yet are known only by their 16S rRNA gene sequence. This study applied metagenomics to obtain a complete circular genome (2.57 Mbp) from a representative of the A6 taxon. Preliminary annotation of the genome indicates these organisms to be anaerobic chemoorganoheterotrophs with a fermentative metabolism. Given their observed abundance, they are likely important primary fermenters in digester systems. Application of fluorescence in situ hybridisation probes designed in this study revealed their morphology to be short filaments present within the flocs. The A6 were sometimes co-located with the filamentous Archaea Methanosaeta spp. suggesting potential undetermined synergistic relationships. Based on its genome sequence and morphology we propose the species name Brevefilum fermentans gen. nov. sp. nov

    The potential synergistic behaviour of inter- and intra-genus probiotic combinations in the pattern and rate of short chain fatty acids formation during fibre fermentation

    Get PDF
    This study compared the rate of short chain fatty acid (SCFA) production by different probiotic combinations of Lactobacillus and Bifidobacterium to determine any synergistic effects. Six different fibre fractions were fermented with nine combinations of Lactobacillus rhamnosus (LR), Lactobacillus acidophilus (LA), Bifidobacterium longum (BL) and Bifidobacterium breve (BB) for 0, 6, 24 and 48 h. SCFAs were quantified by gas chromatography. Inter-genus combinations of bacteria produced more SCFA, especially BB + BL + LR, compared to intra-genus that yielded the lowest SCFA production. Acetate was the most abundant, while propionate and butyrate were the most utilised. The SCFA formation was as acetate \u3e propionate \u3e butyrate and the total dietary fibre produced most of the SCFA. Most combinations utilised 60–80% of the fibre; BB + BL + LR digested the fibre completely. The quantity, pattern and the time of release of SCFA depends on the genus, but the combination of pre and probiotics is of great importance for the outcome

    Primary structure and comparative sequence-analysis of an insect apolipoprotein: apolipophorin-Iii from Manduca-sexta

    Get PDF
    The amino acid sequence of an insect apolipoprotein, apolipophorin-III from Manduca sexta, was determined by a combination of cDNA and protein sequencing. The mature hemolymph protein consists of 166 amino acids. The cDNA also encodes for an amino-terminal extension of 23 amino acids which is not represented in the mature hemolymph protein. The existence of a precursor protein was confirmed by in vitro translation of fat body mRNA. Computer-assisted comparative sequence analysis revealed the following points: 1) the protein is composed of tandemly repeating tetradecapeptide units with a high potential for forming amphiphilic helical structures. Compared to mammalian apolipoproteins the repeat units in the insect apolipoprotein show considerable length variability; 2) the sequence has a striking resemblance to several human apolipoproteins including apoE, AIV, AI, and CI. However, the homology seems to be entirely functional since, although the insect and mammalian apoproteins contain very similar types of amino acid residues, the actual degree of sequence identity is quite low. Whether the mammalian and insect apoproteins are derived from a common ancestral amphiphilic helix forming, lipid-binding protein, or arose by convergent evolution can not be determined at present. This represents the first complete amino acid sequence for an insect apolipoprotein
    • …
    corecore