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The potential synergistic behaviour of inter- and intra genus probiotic combinations in 

the pattern and rate of short chain fatty acids formation in response to fibre fermentation. 

 Abstract 

This study compared the rate of short chain fatty acid (SCFA) production by different probiotic 

combinations of Lactobacillus and Bifidobacterium to determine any synergistic effects.  Six 

different fibre fractions were fermented with nine combinations of Lactobacillus rhamnosus 

(LR), Lactobacillus acidophilus (LA), Bifidobacterium longum (BL) and Bifidobacterium 

breve (BB)  for 0, 6, 24 and 48 hours. SCFAs were quantified by gas chromatography. Inter-

genus combinations of bacteria produced more SCFA, especially BB+ BL+ LR, compared to 

intra-genus that yielded the lowest SCFA production.  Acetate was the most abundant, while 

propionate and butyrate were the most utilized. The SCFA formation was as acetate > 

propionate >butyrate and the total dietary fibre produced most of the SCFA. Most combinations 

utilized 60 % - 80 % of the fibre; BB+ BL+ LR digested the fibre completely. The quantity, 

pattern, and the time of release of SCFA  is depend  on the genus, but the combination of pre 

and probiotics is of great importance for the outcome. 

Introduction 

The human gastrointestinal microbiota is a complex ecosystem dominated by obligate 

anaerobes with 1011 cells per gram of intestinal content (Artis 2008, Wells et al. 2010). 

Although  organisms are mainly responsible for nutrient fermentation, absorption, synthesis, 

inhibition of pathogenic microorganisms and stimulation of the human immune system 

(Krajmalnik-Brown et al. 2012, Wells, Loonen and Karczewski 2010), diet has been speculated 

to be a factor in  controlling the number and the composition of these microbes resulting in 

either  a healthy or unhealthy ecosystem in the human gut (Krajmalnik-Brown, Ilhan, Kang 

and DiBaise 2012).  Consumption of  a large number of refined and processed food modify the 
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microbial ecosystem, causing an increased number of disorders including inflammatory bowel 

disease and atopic disorders(Krajmalnik-Brown, Ilhan, Kang and DiBaise 2012). 

There is a plethora of information that assert food with probiotic either with multi strain or 

single species may support the reinstatement of the healthy balance of the gut micro flora. 

Further, products with mixture of probiotics may have the possible advantage over  those 

containing  single strains in terms of delivering health benefits (Chapman et al. 2011, Haller et 

al. 2010, Lema et al. 2001, Verna and Lucak 2010). Many different microorganisms have been 

identified as a probiotic and most of these microorganisms are naturally present in the human 

gastro intestinal tract (GIT). The most commonly identified probiotics belong to the bacterial 

genera Lactobacillus and Bifidobacterium, based on their role in prevention and treatment of 

various gastrointestinal disorders (Chmielewska and Szajewska 2010, Fijan 2014, Ruiz et al. 

2013, Turroni et al. 2009, Walker 2013). Bifidobacterium that present in human gut are 

autochthonous  and Bifidobacterium longum is one of the predominant species in adults, 

whereas Bifidobacterium breve is the major species in infants (Matsuki et al. 1999, Underwood 

et al. 2015). There are 17 Lactobacillus species that are associated with the human GIT as 

probiotics and the majority are allochthonous.  L. acidophilus, L. casei, L. paracasei, L. 

rhamnosus, L. delbrueckii, L. brevis, L. johnsonii, L. plantarum, and L. fermentum are regularly 

present in fermented foods, and they are  also common inhabitants of the oral cavity (Walter 

2008). 

Dietary fibres, exhibit a diverse range of physico-chemical properties that are important for the 

growth of probiotic   microorganisms and thus are considered as prebiotics (Slavin 2013).  The 

major end products of the fermentation of dietary fibre are short chain fatty acids ( SCFA); 

acetate, propionate and butyrate (den Besten et al. 2013). They are small molecules which have 

an array of biological functions, such as a histone deacetylase (HDAC) inhibitor, an energy 

metabolite to produce ATP and a G protein-coupled receptor (GPCR) activator (den Besten, 
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van Eunen, Groen, Venema, Reijngoud and Bakker 2013). The SCFA also an energy source to 

epithelial cells. However, the rate, extent, and the molar ratio of SCFA formed by colonic 

microorganisms, are dependent upon the nature of the dietary fibre such as its solubility, degree 

of polymerization, type of linkages, branching, and monomeric composition as well as the 

profile of the microorganisms in the colon and their metabolic interactions (den Besten, van 

Eunen, Groen, Venema, Reijngoud and Bakker 2013). The mostly studied prebiotics are 

galacto-oligosaccharides (GOS), inulin and fructo-oligosaccharides (FOS), and lactulose 

(Slavin 2013), but studies are lacking with fibres from more commonly consumed foods such 

as rice, tea  and coconut. In addition,  few work has been identified combinations of different 

commonly used probiotics and prebiotics from commonly consumed and their synergistically 

enhanced  viability and  health beneficial metabolic activities of the probiotic microorganisms 

(Slavin 2013). 

Our previously reported  works evaluated the synergistic effect of insoluble (IDF), soluble 

(SDF) and total dietary fibre (SDF) of rice with Lactobacillus rhamnosus (LR), Lactobacillus 

acidophilus (LA), Bifidobacterium longum (BL) and Bifidobacterium breve (BB)(Fernando et 

al. 2010, Fernando et al. 2011, Fernando et al. 2008). Our previous work recognised high 

survival rate of  the microrganisms with IDF, SDF and TDF of rice as single strains and as co 

cultures. Our studies further confirmed higher formation of SCFA when single strains were 

used. Previous studies have found that probiotics may influence SCFA formation by producing 

SCFA’s themselves or by stimulating or suppressing the activity of other SCFA producing 

bacteria in the colon (den Besten, van Eunen, Groen, Venema, Reijngoud and Bakker 2013). 

Since the human gut has a symbiotic environment, metabolic consequences due to 

microbiological interactions cannot be identified simply from the substrate preferences and 

product formation of pure cultures, which limits the usefulness of previous research on single 
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microorganism fermentation of  food substrates. Therefore, studies with combinations of 

microorganisms are more realistic to the in vivo environment. 

The main objective of the present study was to study the effects of different combinations of 

Lactobacillus rhamnosus (LR), Lactobacillus acidophilus (LA), Bifidobacterium longum (BL) 

and Bifidobacterium breve (BB) on the rate and profile of SCFA development during their  

fermentation of rice fibre. 

Material and Methods 

Rice varieties 

Rice varieties were selected based on their milling grade to understand whether the milling 

grade has an impact on the fermentation by co-cultures. Two rice varieties were chosen:—

LD356 (RR1, red in colour, brown rice, dehulled) and AT353 (RR2, red in colour, unpolished, 

most of the germ having been removed). 

Determination of soluble, insoluble and total dietary fibre 

Soluble (SDF), insoluble (IDF) and total dietary fibre (TDF)  of two rice varieties were isolated 

according to the AOAC method 991.43(McCleary et al. 2012). The ratio of  SDF, IDF and 

TDF is  different in  each  rice variety as shown in our previous studies (Fernando, Flint, Zou, 

Brennan, Ranaweera and Bamunuarachchi 2011). Fibre fractions from rice variety RR1 were 

designated as  IDF1, SDF1 and TDF1 and those from  variety RR2 designated as IDF2, SDF2 

and TDF2. 

Bacterial strains 

Bacterial strains Lactobacillus rhamnosus (ATCC 7469) (LR), Lactobacillus acidophilus 

(ATCC11975) (LA), Bifidobacterium breve (ATCC15700) (BB), and Bifidobacterium longum 

(ATCC15707) (BL), were obtained from the culture collection at the Institute of Environmental 

Science and Research Limited, New Zealand. 

Co-cultures 
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Pure cultures of bacterial strains were combined in a 1:1 (v/v) ratio to prepare nine 

combinations in equal proportions. The population of each micro-organism  which was 

incubated for 24h, was 107 CFU/mL, (OD 2.4 - 2.5, at 540 nm) at the time of mixing. The 

combinations were LA+LR, BB+BL, BB+LA, BB+LR, BL+LA, BL+LR, BB+BL+LA, 

BB+BL+LR, and BB+BL+LA+LR, 

Preparation of cell suspensions 

Freeze dried cultures were rehydrated by inoculating Lactobacillus spp. in de Man, Rogosa, 

and Sharpe (MRS) medium and Bifidobacterium spp. in Reinforced Clostridial medium, under 

strict anaerobic conditions. Anaerobic conditions were created by using an anaerobic chamber 

with the gas pack (Oxoid Ltd., Hampshire, England) throughout the experiment. Lactobacillus 

spp. were incubated at 37 °C for 24 h and Bifidobacterium spp. were incubated at 37 °C for 

72 h to obtain the complete growth curves of the organisms. For the fermentation trials, the 

bacteria were sub-cultured twice in 10 ml of the appropriate medium containing 10 g/l glucose 

as the carbon source. After the incubation, the bacterial cells were centrifuged, washed twice 

with physiological saline (0.85% NaCl solution), and resuspended in the basal medium Peptone 

Yeast extract Fildes (PYF solution) to remove excess carbon before the fermentation trials. The 

suspension was then diluted to 1:10 with the basal medium (Jaskari et al. 1998). 
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Preparation of growth medium 

The basal medium, PYF solution, (carbohydrate-free medium), consisted of 10 g Trypticase 

Peptone, 5 g yeast extract, 0.5 g L-cysteine hydrochloride, 40 mL digested horse blood, and 40 

mL salts solution per 1 L. The salts solution contained 0.2 g CaCl2, 0.2 g MgSO4 ·7H20, 1.0 

g KH2 PO4 , 1.0 g K2HPO4. 

In-vitro fermentation with co-cultures 

Fermentations were conducted in sterile 100 mL bottles. Each bottle contained culture medium, 

substrate, and pure cultures. Culture medium (50 mL) and 1% (v/v) substrate (extracted TDF, 

SDF or IDF from each of the rice varieties) were added to each bottle and sealed for 24 h for 

complete hydration of the fibre. The bottles were maintained at 37 o C for 2 h prior to inoculation 

and 10 % of the bacterial suspension of co-cultures (107 colony forming units [cfu]/mL) were 

added to the broth medium (pH 7.6). Fermentation was conducted under strict anaerobic 

conditions. Fermentation was done in duplicate and aliquots were removed at 0, 6, 12, 18, 24 , 

36 and 48 h after incubation. A volume of 1mL was used to prepare a 10-fold dilution series to 

analyse viable count, a volume of 1.5 mL was taken to measure the optical density (540 nm) 

and 2-3 mL was taken for pH measurement. Aliquots of 2 mL were removed at 0, 6, 12, 18, 

24,36 and 48 h after incubation for SCFA analysis, and the growth of microbes was stopped 

by adding 1 mL of 10 g/L copper sulphate. Gas packs were replaced with new packs after each 

aliquot was removed. The samples were kept at -20 ᵒC for further processing. Fermentation 

was carried out in duplicates and two independent experiments were done. 

Determination of SCFA by gas chromatography 

 Chemicals and reagents to prepare standards 
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Acetic acid (100%) was obtained from Merck (Darmstadt, Germany). Propionic acid (100%)), 

n-butyric acid (99%), were purchased from Sigma (St Louis, MO, USA).  These chemicals

were used as standards for GLC.  2-Ethylbutyric acid purchased from Sigma-Aldrich (Chemie 

GmbH, Steinheim, Germany) was used as an internal standard. The water used in the 

experiment was purified using a Milli-Q® reagent water system (Millipore, Molsheim, 

France). 

Preparation of samples for Gas Chromatography 

Samples were thawed and the pH was adjusted to 6.5 with 4M KOH followed by adding 0.01 

mL of 0.3M oxalic acid(Pylkas, Juneja and Slavin 2005). 

Preparation of stock standard solution 

An aqueous stock standard solution was prepared for each acid with a concentration of 500 

mM for acetic acid and 200mM for propionic acid and n-butyric acid.  2-Ethylbutyric acid 

solution (4 mM) in methanol was prepared as an internal standard stock solution. All the stock 

standard solutions were stored at −20 °C.  

Preparation of standard mix solution 

A standard mix solution of acetic, propionic and butyric was prepared in water using stock 

solutions at 50:10: 10, 35:7.5:7.5, 20: 10:10, 25:5:5 and 15:2.5:2.5 mM. 

Experimental conditions for gas chromatography 

Analyses were performed using an Agilent 6890N GC (Hewlett Packard, Palo Alto, CA, USA) 

with a flame ionization detector (FID). A fused-silica capillary column with a free fatty acid 

phase (DB-FFAP 125-3237, J&W Scientific, Agilent Technologies Inc., USA) of 30 m × 0.53 

mm and with 0.50 μm film thickness was used. Helium was the carrier gas at a flow rate of 

14.4 mL/min. The initial oven temperature was 60 °C, maintained for 0.5 min, raised to 180 

°C at 8 °C/min and held for 1 min, then increased to 250 °C at 20 °C/min, and finally held at 

250 °C for 5 min. Glass wool (Supelco 20411; Sigma Aldrich) was placed in the glass liner of 
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the split less injection port. These glass wool was prepared by  immersing  in H3PO4  (100g/L) 

for 1 h  and rinsing to remove the excess acid before placing  in a 100 °C oven for 1 h. The 

temperature of the flame ionization detector and the injection port was 240 and 200 °C, 

respectively. Flow rates of nitrogen, hydrogen and air were 20, 30 and 275 mL/min, 

respectively. The injected sample volume was 1 μL, and the run time for each analysis was 

16.5 min. Data handling was carried out with HP Chem Station Plus software (A.09.xx, 

Agilent). Unknown peaks did not interfere with SCFA peaks of interest and the appearance of 

ghost peaks was not significant. 1 μL of water was injected before starting the analysis and 

after 10 runs to remove the unknown impurities of the column. 

The SFCA’s produced by fermentation, were determined by the method of Pylkas et al. 2005 

with minor modifications. Samples (2 mL) that had been taken at the required fermentation 

time, (stored frozen) thawed and centrifuged for 30 minutes at 5000 x g at room temperature 

(In original method-3000 x g). The supernatant (0.75 mL) was transferred to a sterile vial and 

vortex mixed with meta-phosphoric acid (20 %, 0.3 mL). Vials were incubated with meta-

phosphoric acid at room temperature for 30 min, after which samples were centrifuged for 20 

min at 20,000 g for 10 min (In original method-5000 x g for 15 min). The supernatant was 

analysed for SCFA by GLC. Samples were stored at -20 ᵒ C for further processing. 

Centrifugation times are different from original method as described. 

Standard curve, Retention time of standards, Quantification, Calculation of relative 

response factor (RRF), Concentration of SCFA mM in sample 

All these methods are described in our previous papers (Fernando et al. 2008, 2010) 

Determination of the indigestible percentage of soluble dietary fibre (following fermentation 

of SDF) 

The supernatant (5 mL) (used for SCFA analysis) was centrifuged at 24000*g for 15 min at 

room temperature to remove bacteria (Titgemeyer et al. 1991). The resulting supernatant was 
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mixed with four volumes of 95 % of ethanol to precipitate the soluble dietary fibre. The 

precipitate was isolated by filtration with 541 filter paper (Whatman Internationational Ltd, 

Maidstone, UK). The paper and residue was dried at 105 ºC and weighed.  After correction for 

residue from the blank tubes, this residue was considered the non-fermented soluble fibre. 

Blank tubes were prepared for each combination without adding the substrate to make the 

appropriate corrections for the inocula. 

Determination of the indigestible percentage of insoluble dietary fibre (following 

fermentation of IDF) 

 The pellet from centrifugation of 5 mL supernatant from the initial centrifugation used for 

SCFA analysis was  re suspended in one mL acid pepsin solution (Pepsin a, 1:10000, Sigma 

Chemical Co, Balcatta, WA) and incubated for 48 h at 37 ºC. After incubation the suspension 

was filtered through 541 filter paper (Whatman Internationational Ltd Maidstone, UK).   The 

paper and residue was dried at 105 ºC and weighed. After correction for the residue from the 

blank tubes, this residue was considered as non-fermented insoluble fibre (Tilley and Terry 

1963). 

Determination of the indigestible percentage of total dietary fibre (following fermentation of 

TDF) 

The indigestible quantity of SDF and IDF was measured using above methods from 5 mL of 

the aliquots of the fermentation broth at each time point. The sum of both SDF and IDF was 

considered as the indigestible amount of TDF. 

Determination of the percentage of dry matter disappearance 

{[(Substrate dry matter – (residual dry matter (IDF/SDF/TDF)] - blank weight) / 

substrate dry matter]}x100 
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 Percentage of dry matter disappearance was  calculated by a modification of a previous 

formula (McBurney and Thompson 1987). 

Statistical analysis 

The in vitro fermentation experiment was conducted as a randomised complete block with 9 

combinations of micro-organisms serving as blocks. Treatment was factorially arranged with 

three substrates (IDF, SDF and TDF) and six lengths of fermentation (0, 6,18, 24,36 and 48 

h). The analyses were performed in duplicates and results were expressed as mean values and 

SD. Data were analysed using the statistical analysis package of Microsoft Excel 2003. 

Statistical evaluations between groups were performed using Analysis of variance, Paired 

Student t tests followed by Tukey-Kramer honest significance difference test to establish 

differences between group means, and by a Dunnet test to compare each group with controls. 

Results 

Trend of  SCFA formation 

All the combinations produced more acetate (p<0.05) than propionate and butyrate, results of 

three combinations are shown in the Table 1. The amount of the acetate formed by intra-genus 

combinations was less than inter- genus combinations. There was no significant difference 

(p<0.5) in propionate and butyrate produced by different combinations. This indicates that 

when these microorganisms work as co-cultures, they produce more acetate from fibre 

fermentation than propionate and butyrate. The present study identified two clearly distinct 

types of SCFA formation from combinations. Intra-genus combinations formed less SCFA than 

those containing members of a different genus (Figures 1 and 2). For instance, the combinations 

of BB+BL and LA+LR produced significantly (p<0.05) less SCFA than those containing more 

than one genus. Similar results were observed  with  ropy strains of yoghurt culture, where 

combinations of ropy cultures, did not improve the final texture more than the combinations of 

ropy and non-ropy strains(Rawson and Marshall 1997). Species belonging to the same genus 
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are likely to have similar nutrient requirements  and  may result in competition for adherence 

to fibre, fibre hydrolysis, and utilization of hydrolytic products, all leading to a reduction of the 

potential amount of metabolite formation. Microorganisms belonging to a different genus are 

more likely than those of the same genus to interact synergistically (Cheirsilp et al. 2003, 

Corsetti et al. 2004, Loessner et al. 2003) with the metabolite formation of mixed cultures 

appearing to be strain specific as reported previously (Saulnier et al. 2007). 

 The rate of SCFA formation 

The rate of SCFA formation also varied among the combinations and was dependent on the 

time point.  The combinations LA+LR and BB+BL had the lowest rate of SCFA formation,  

while combinations with members of a different genus had higher rate of SCFA formation. 

The later combination produced more SCFA after 24 h s of fermentation  and this was 

compatible with their growth curve  (Fernando, Flint, Zou, Brennan, Ranaweera and 

Bamunuarachchi 2011) which we studied  previously. Among all the combinations 

BB+BL+LR produced a significantly higher (P<0.05) amount of total SCFA at 6 h and 24 h 

(Figure 1 and 2), suggesting their effectiveness as co-cultures in terms of  SCFA formation. 
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The quantity of SCFA formation 

The quantity of SCFA formation was as acetate >propionate ≥ butyrate for all the combinations. 

Acetate   formation increased in the first 24 hours of fermentation, but   propionate and butyrate 

had a lower progression throughout the fermentation. The low level of  propionate and butyrate 

indicates that microorganisms might have utilized propionate and butyrate as an energy source 

for their survival. Another explanation for the lower propionate and butyrate formation by the 

microorganisms throughout the present study might be attributed to the nature of the strains 

used, as well as to the different composition of sugars in the dietary fibre fractions. 

Digestion of fibre by Bifidobacterium and Lactobacillus 

Intra-genus combinations digested rice fibre less than the other combinations (Table 2), with 

the amount of undigested fibre appearing to be strain specific. Among the mix combinations, 

combinations that contained Bifidobacterium showed a reduced level of substrates after 48h. 

Combinations such as BB+BL+LA and BB+BL+LR had less than 5% remaining after 48h for 

SDF of RR2.  Total dietary fibre and SDF of RR2 was most preferable type of fibre by all the 

combinations. It is also worth noting that 50% of fibre were utilised within 24hs, irrespective 

of type of fibre and combination. 

SCFA formation based on the type of fibre 

The amount of metabolites formed varied with the different substrates. All the co-cultures 

formed a greater amount of SCFA with TDF than with the IDF and SDF (Figure 2). This 

indicates that the most preferred fibre fraction was TDF for selected microbial combinations. 

SCFA formation among the fibre fractions followed the pattern TDF>SDF>IDF. Interestingly, 

the formation of SCFA with glucose was not higher than the TDF. Glucose is a mono 

saccharide whereas rice fibre fractions are likely to contain mixed glucan components. This 

observation indicates that the complex nature of dietary fibre does not limit fermentation rate 

of glucan units. 
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Discussion 

Short-chain fatty acids (SCFAs)  are recognised  as an important microbial end-product of the 

fermentation in the human colon (Louis et al. 2014). The quantity and ratio of SCFA (as acetate, 

propionate, butyrate) in the human gut is considered as a  biomarker  for a  healthy human gut 

(Brussow and Parkinson 2014, David et al. 2014). 

Previous work has illustrated that acetate is the most abundant SCFA in the colon and this 

agreed with our observations, yielding acetate  more than 50% of  total SCFA production 

(Fernando, Ranaweera, Bamunuarachchi and Brennan 2008, Louis et al. 2007) irrespective of 

combination differences (Table 1). However, higher quantity of acetate was observed from the 

combinations enriched with Bifidobacterium than the combinations of Lactobacillus (Table 1). 

Although, literature indicates  most enteric bacteria  as well as acetogenic bacteria produce 

acetate (Fernando, Ranaweera, Bamunuarachchi and Brennan 2008) as a result of fermentation 

of carbohydrate  or using Wood–Ljungdahl pathway (Louis, Hold and Flint 2014) in human 

gut, Bifidobacterium metabolise carbohydrate through a particular metabolic pathway, named 

the “bifid shunt”, where the fructose-6-phosphoketolase enzyme is involved (de Vries and 

Stouthamer 1967). This pathway yields more energy in the form of ATP from carbohydrates 

for Bifidobacterium than the fermentative pathways for Lactobacillus which converts acetyl 

phosphate in to acetate without using ATP.  Bifidobacterium  generate 2.5 ATP molecules from 

1 mol of fermented glucose, as well as 1.5 mol of acetate and 1 mol of lactate (Palframan et al. 

2003) whereas  the heterofermentative Lactobacillus produce 1 mol  of ATP (Tamime 2013), 

0.5 moles of lactate, and 0.5 moles of ethanol or acetate using transketolase pathway (Pessione 

2012). This may explain higher quantity of acetate generated from the   combinations enriched 

with Bifidobacterium than the combinations of Lactobacillus (Table 1).     

Previous research on the fermentation of dietary fibre demonstrated increased ratio of butyrate 

formation (Berggren et al. 1993, Khan and Edwards 2005) by organisms in the rat caecum 
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which had  mixture of probiotic combinations(Nilsson et al. 2006). In contrast, our current 

work, the ratio of propionate and butyrate was significantly less (p<0.05) than acetate for all 

the combinations and for all the fractions of fibre (Table 1). Our results also indicated the 

microorganisms in the combinations of BB+BL+LR produced the lowest ratio for acetate to 

propionate, as acetate formation was high in these combinations.  However, literature states 

that  acetate can be converted into butyrate through cross-feeding interactions(De Vuyst and 

Leroy 2011, De Vuyst et al. 2014).  Therefore, excess acetate  may be converted in to butyrate. 

In summary, having a synergistic combinations of prebiotic and probiotic which can produce 

higher quantity of acetate is beneficial to enhance formation of butyrate in human gut. Research 

has suggested that a low ratio between acetate to propionate is important to reduce the human 

serum cholesterol level in men and also reported diseases such as, ulcerative colitis (Machiels 

et al. 2014) and asthma cause (Arrieta et al. 2015)  to have low number of butyrate and 

propionate producers such as Faecalibacterium Lachnospira, Veillonella, and Rothia 

(FLVR)— in human. 

This study found a unique array of SCFA formation from fibre by combinations of more than 

two microorganisms. The total amount of SCFA produced by combinations of more than two 

microorganisms varied with BB+BL+LR> BB+BL+LA> BB+BL+LA+LR. These three 

combinations produced more SCFA than the other combinations and much more than the 

BB+BL / LA+LR combinations. This suggests metabolism of fibre fractions could be changed 

due to the changes of the organisms. Similar observations have been recorded with gut 

organisms of the rat with the addition of Bifidobacterium with inulin and pectin (Nilsson, 

Nyman, Ahrné, Sullivan and Fitzgerald 2006). The results also suggested that BB+BL have the 

ability to work synergistically with the growth of Lactobacillus species.  This type of positive 

interactions are always an important in the succession of microbes in fermentation ecosystems. 
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This may be due to the metabolic cross-feeding or substrate cross feeding (Belenguer et al. 

2006).  

Bifidobacterium genomes possess high numbers of genes encoding glycoside hydrolases  

which play a role in the degradation of carbohydrates (van den Broek et al. 2008). Therefore,  

Bifidobacterium are particularly in efficient uptake of oligosaccharides and to degrade them 

into monosaccharides (Van der Meulen et al. 2004).  Researchers have also identified that 

Bifidobacterium utilise non-digestible carbohydrates as energy sources, including resistant 

starch, pectin, inulin, arabinoxylan (AX), cellulose, and their corresponding oligosaccharides, 

but this ability is strain-dependent (McLaughlin et al. 2015, Selak et al. 2016). Genomes of 

Lactobacillus encodes numerous genes involved in the metabolism of a variety of 

carbohydrates specially tri- and tetrasaccharides (Makarova et al. 2006). However, most of the 

enzymes that are responsible for the digestion are intracellular complexes such as glycosyl 

hydrolases that clearly differentiates Lactobacillus from Bifidobacterium (Sela et al. 2008). 

This was further evidenced with the observed digestion pattern of the current work (Table 2). 

The combinations rich with Bifidobacterium had a higher rate of digestion of fibre than the 

other combinations. For instance, the combination of BB+BL+LR digested the SDF of both 

rice varieties and TDF of RR2 completely. 

Conclusion 

The results from the fermentation of fibre by combinations of microorganisms are 

assumed to relate to the microbial activity that is likely to occur in the human gut.  The findings 

of the present study indicate that supplementing the diet with fibre especially rice fibre will 

stimulate the formation of acetate in human gut which could in turn results in formation of 

higher quantity of butyrate. All the microbial combinations produced the SCFA under low 

oxygen and highly reducing experimental conditions, similar to conditions in the distal colon. 
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The site of fermentation in human gut may also influence the quantity of SCFA. The current 

study also illustrated a degree of synergistic behavior in inter-genus probiotic fermentations 

indicating the potential use of multi genus combinations in the creation of probiotic resources 

for the food industry. The findings of this study advances the knowledge on the efficacy of 

combinations of probiotic bacteria for the development of synbiotic products. 

Acknowledgement, 

The  authors  gratefully  acknowledge  the  support  from the Asian  Development Bank .All 

authors contributed to the  literature  search,  analysis  of the data published, manuscript writing 

and revisions of the article.  The authors declare no conflicts of interest arising from the 

conclusions of this research. 

References 

Arrieta MC, Stiemsma LT, Dimitriu PA, Thorson L, Russell S, Yurist-Doutsch S, Kuzeljevic B, Gold MJ, 
Britton HM, Lefebvre DL, et al. 2015. Early infancy microbial and metabolic alterations affect risk of 
childhood asthma. Sci Transl Med.7:307ra152. 
Artis D. 2008. Epithelial-cell recognition of commensal bacteria and maintenance of immune 
homeostasis in the gut. Nat Rev Immunol.8:411-420. 
Belenguer A, Duncan SH, Calder AG, Holtrop G, Louis P, Lobley GE, Flint HJ. 2006. Two routes of 
metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes 
from the human gut. Appl Environ Microbiol.72:3593-3599. 
Berggren AM, Björck IME, Nyman EMGL, Eggum BO. 1993. Short-chain fatty acid content and pH in 
caecum of rats given various sources of carbohydrates. J Sci Food Agr.63:397-406. 
Brussow H, Parkinson SJ. 2014. You are what you eat. Nat Biotechnol.32:243-245. 
Chapman CMC, Gibson GR, Rowland I. 2011. Health benefits of probiotics: are mixtures more effective 
than single strains? Eur J Clin Nutr 50:1-17. 
Cheirsilp B, Shoji H, Shimizu H, Shioya S. 2003. Interactions between Lactobacillus kefiranofaciens and 
Saccharomyces cerevisiae in mixed culture for kefiran production. J Biosci Bioeng.96:279-284. 
Chmielewska A, Szajewska H. 2010. Systematic review of randomised controlled trials: probiotics for 
functional constipation. World J Gastroenterol.16:69-75. 
Corsetti A, Settanni L, Van Sinderen D. 2004. Characterization of bacteriocin-like inhibitory substances 
(BLIS) from sourdough lactic acid bacteria and evaluation of their in vitro and in situ activity. J Appl 
Microbiol.96:521-534. 
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, 
Fischbach MA, et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. 
Nature.505:559-563. 



18 

de Vries W, Stouthamer AH. 1967. Pathway of glucose fermentation in relation to the taxonomy of 
bifidobacteria. J Bacteriol.93:574-576. 
De Vuyst L, Leroy F. 2011. Cross-feeding between bifidobacteria and butyrate-producing colon 
bacteria explains bifdobacterial competitiveness, butyrate production, and gas production. Int J Food 
Microbiol.149:73-80. 
De Vuyst L, Moens F, Selak M, Riviere A, Leroy F. 2014. Summer Meeting 2013: growth and physiology 
of bifidobacteria. J Appl Microbiol.116:477-491. 
den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM. 2013. The role of short-
chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid 
Res.54:2325-2340. 
Fernando WMADB, Brennan CS, Flint S, Ranaweera KKDS, Bamunuarachchi A, Morton HR. 2010. 
Enhancement of short chain fatty acid formation by pure cultures of probiotics on rice fibre. 
IJFST.45:690-696. 
Fernando WMADB, Flint S, Zou M, Brennan CS, Ranaweera KKDS, Bamunuarachchi A. 2011. The effect 
of rice fibre fractions on the growth of co-cultures of probiotics. JFST.48:14-25. 
Fernando WMADB, Ranaweera KKDS, Bamunuarachchi A, Brennan CS. 2008. The influence of rice fibre 
fractions on the in vitro fermentation production of short chain fatty acids using human faecal micro 
flora. IJFST.43:2237-2244. 
Fijan S. 2014. Microorganisms with Claimed Probiotic Properties: An Overview of Recent Literature. 
Int J Environ Res Publ Health.11:4745-4767. 
Haller D, Antoine J-M, Bengmark S, Enck P, Rijkers GT, Lenoir-Wijnkoop I. 2010. Guidance for 
Substantiating the Evidence for Beneficial Effects of Probiotics: Probiotics in Chronic Inflammatory 
Bowel Disease and the Functional Disorder Irritable Bowel Syndrome. J Nutr.140. 
Jaskari J, Kontula P, Siitonen A, Jousimies-Somer H, Mattila-Sandholm T, Poutanen K. 1998. Oat beta-
glucan and xylan hydrolysates as selective substrates for Bifidobacterium and Lactobacillus strains. 
Appl Microbiol Biotechnol.49:175-181. 
Khan KM, Edwards CA. 2005. In vitro fermentation characteristicsof a mixture of Raftilose and guar 
gumby human faecal bacteria. Eur J Clin Nutr.44:371-376. 
Krajmalnik-Brown R, Ilhan Z-E, Kang D-W, DiBaise JK. 2012. Effects of Gut Microbes on Nutrient 
Absorption and Energy Regulation. Nutr Clin Pract.27:201-214. 
Lema M, Williams L, Rao DR. 2001. Reduction of fecal shedding of enterohemorrhagic Escherichia coli 
O157:H7 in lambs by feeding microbial feed supplement. Small Ruminant Research.39:31-39. 
Loessner M, Guenther S, Steffan S, Scherer S. 2003. A pediocin-producing Lactobacillus plantarum 
strain inhibits Listeria monocytogenes in a multispecies cheese surface microbial ripening consortium. 
Appl Environ Microbiol.69:1854-1857. 
Louis P, Hold GL, Flint HJ. 2014. The gut microbiota, bacterial metabolites and colorectal cancer. Nat 
Rev Microbiol.12:661-672. 
Louis P, Scott KP, Duncan SH, Flint HJ. 2007. Understanding the effects of diet on bacterial metabolism 
in the large intestine. J Appl Microbiol.102:1197-1208. 
Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V, Ballet V, Claes K, Van Immerseel F, 
Verbeke K, et al. 2014. A decrease of the butyrate-producing species Roseburia hominis and 
Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut.63:1275-1283. 
Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, 
Polouchine N, et al. 2006. Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci 
103:15611-15616. 
Matsuki T, Watanabe K, Tanaka R, Fukuda M, Oyaizu H. 1999. Distribution of Bifidobacterial Species 
in Human Intestinal Microflora Examined with 16S rRNA-Gene-Targeted Species-Specific Primers. Appl 
Environ Microbiol 65:4506-4512. 
McBurney MI, Thompson LU. 1987. Effect of human faecal inoculum on in vitro fermentation 
variables. BJN.58:233-243. 



19 

McCleary BV, DeVries JW, Rader JI, Cohen G, Prosky L, Mugford DC, Okuma K. 2012. Determination of 
insoluble, soluble, and total dietary fiber (CODEX definition) by enzymatic-gravimetric method and 
liquid chromatography: collaborative study. J AOAC Int.95:824-844. 
McLaughlin HP, Motherway MO, Lakshminarayanan B, Stanton C, Paul Ross R, Brulc J, Menon R, 
O'Toole PW, van Sinderen D. 2015. Carbohydrate catabolic diversity of bifidobacteria and lactobacilli 
of human origin. Int J Food Microbiol.203:109-121. 
Nilsson U, Nyman M, Ahrné S, Sullivan EO, Fitzgerald G. 2006. Bifidobacterium lactis Bb-12 and 
Lactobacillus salivarius UCC500 Modify Carboxylic Acid Formation in the Hindgut of Rats Given Pectin, 
Inulin, and Lactitol. J Nutr.136:2175-2180. 
Palframan RJ, Gibson GR, Rastall RA. 2003. Carbohydrate preferences of Bifidobacterium species 
isolated from the human gut. Curr Issues Intest Microbiol.4:71-75. 
Pessione E. 2012. Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows. 
Front Cell Infect Microbiol.2:86. 
Rawson HL, Marshall VM. 1997. Effect of ‘ropy’ strains of Lactobacillus delbrueckii ssp. bulgaricus and 
Streptococcus thermophilus on rheology of stirred yogurt. IJFST.32:213-220. 
Ruiz L, Margolles A, Sanchez B. 2013. Bile resistance mechanisms in Lactobacillus and Bifidobacterium. 
Front Microbiol.4:396. 
Saulnier DM, Molenaar D, de Vos WM, Gibson GR, Kolida S. 2007. Identification of prebiotic 
fructooligosaccharide metabolism in Lactobacillus plantarum WCFS1 through microarrays. Appl 
Environ Microbiol.73:1753-1765. 
Sela DA, Chapman J, Adeuya A, Kim JH, Chen F, Whitehead TR, Lapidus A, Rokhsar DS, Lebrilla CB, 
German JB, et al. 2008. The genome sequence of Bifidobacterium longum subsp. infantis reveals 
adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci U S A.105:18964-
18969. 
Selak M, Riviere A, Moens F, Van den Abbeele P, Geirnaert A, Rogelj I, Leroy F, De Vuyst L. 2016. Inulin-
type fructan fermentation by bifidobacteria depends on the strain rather than the species and region 
in the human intestine. Appl Microbiol Biotechnol.100:4097-4107. 
Slavin J. 2013. Fiber and Prebiotics: Mechanisms and Health Benefits. Nutrients.5:1417-1435. 
Tamime AY. 2013. Lactic Acid Bacteria – Microbiological and Functional Aspects (2012). Int J Dairy 
Technol.66:149-150. 
Tilley JMA, Terry RA. 1963. A Two-Stage Technique For The In Vitro Digestion Of Forage Crops. Grass 
Forage Sci.18:104-111. 
Titgemeyer EC, Cameron MG, Bourquin LD, Fahey GC. 1991. Digestion of Cell Wall Components by 
Dairy Heifers Fed Diets Based on Alfalfa and Chemically Treated Oat Hulls. J Dairy Sci.74:1026-1037. 
Turroni F, Foroni E, Pizzetti P, Giubellini V, Ribbera A, Merusi P, Cagnasso P, Bizzarri B, de'Angelis GL, 
Shanahan F, et al. 2009. Exploring the Diversity of the Bifidobacterial Population in the Human 
Intestinal Tract. Appl Environ Microbiol 75:1534-1545. 
Underwood MA, German JB, Lebrilla CB, Mills DA. 2015. Bifidobacterium longum subspecies infantis: 
champion colonizer of the infant gut. Pediatr Res.77:229-235. 
van den Broek LA, Hinz SW, Beldman G, Vincken JP, Voragen AG. 2008. Bifidobacterium 
carbohydrases-their role in breakdown and synthesis of (potential) prebiotics. Mol Nutr Food 
Res.52:146-163. 
Van der Meulen R, Avonts L, De Vuyst L. 2004. Short fractions of oligofructose are preferentially 
metabolized by Bifidobacterium animalis DN-173 010. Appl Environ Microbiol.70:1923-1930. 
Verna EC, Lucak S. 2010. Use of probiotics in gastrointestinal disorders: what to recommend? Therap 
Adv Gastroenterol.3:307-319. 
Walker WA. 2013. Initial intestinal colonization in the human infant and immune homeostasis. Ann 
Nutr Metab.63 Suppl 2:8-15. 
Walter J. 2008. Ecological Role of Lactobacilli in the Gastrointestinal Tract: Implications for 
Fundamental and Biomedical Research. Appl Environ Microbiol 74:4985-4996. 



20 

Wells JM, Loonen LM, Karczewski JM. 2010. The role of innate signaling in the homeostasis of 


	The potential synergistic behaviour of inter- and intra-genus probiotic combinations in the pattern and rate of short chain fatty acids formation during fibre fermentation
	Authors

	The potential synergistic behaviour of inter- and intra genus probiotic combinations in the pattern and rate of short chain fatty acids formation during fibre fermentation.
	Rice varieties
	Determination of soluble, insoluble and total dietary fibre
	Bacterial strains
	Bacterial strains Lactobacillus rhamnosus (ATCC 7469) (LR), Lactobacillus acidophilus (ATCC11975) (LA), Bifidobacterium breve (ATCC15700) (BB), and Bifidobacterium longum (ATCC15707) (BL), were obtained from the culture collection at the Institute of ...
	Co-cultures
	Preparation of cell suspensions
	Preparation of growth medium
	The basal medium, PYF solution, (carbohydrate-free medium), consisted of 10 g Trypticase Peptone, 5 g yeast extract, 0.5 g L-cysteine hydrochloride, 40 mL digested horse blood, and 40 mL salts solution per 1 L. The salts solution contained 0.2 g CaClR...
	In-vitro fermentation with co-cultures
	Fermentations were conducted in sterile 100 mL bottles. Each bottle contained culture medium, substrate, and pure cultures. Culture medium (50 mL) and 1% (v/v) substrate (extracted TDF, SDF or IDF from each of the rice varieties) were added to each bo...
	Determination of SCFA by gas chromatography
	Chemicals and reagents to prepare standards
	Acetic acid (100%) was obtained from Merck (Darmstadt, Germany). Propionic acid (100%)), n-butyric acid (99%), were purchased from Sigma (St Louis, MO, USA).  These chemicals were used as standards for GLC.  2-Ethylbutyric acid purchased from Sigma-Al...
	Preparation of samples for Gas Chromatography
	Samples were thawed and the pH was adjusted to 6.5 with 4M KOH followed by adding 0.01 mL of 0.3M oxalic acid(Pylkas, Juneja and Slavin 2005).
	Preparation of stock standard solution
	An aqueous stock standard solution was prepared for each acid with a concentration of 500 mM for acetic acid and 200mM for propionic acid and n-butyric acid.  2-Ethylbutyric acid solution (4 mM) in methanol was prepared as an internal standard stock s...
	Preparation of standard mix solution
	A standard mix solution of acetic, propionic and butyric was prepared in water using stock solutions at 50:10: 10, 35:7.5:7.5, 20: 10:10, 25:5:5 and 15:2.5:2.5 mM.
	Experimental conditions for gas chromatography
	Analyses were performed using an Agilent 6890N GC (Hewlett Packard, Palo Alto, CA, USA) with a flame ionization detector (FID). A fused-silica capillary column with a free fatty acid phase (DB-FFAP 125-3237, J&W Scientific, Agilent Technologies Inc., ...
	The SFCA’s produced by fermentation, were determined by the method of Pylkas et al. 2005 with minor modifications. Samples (2 mL) that had been taken at the required fermentation time, (stored frozen) thawed and centrifuged for 30 minutes at 5000 x g ...
	Standard curve, Retention time of standards, Quantification, Calculation of relative response factor (RRF), Concentration of SCFA mM in sample
	All these methods are described in our previous papers (Fernando et al. 2008, 2010)

	Determination of the indigestible percentage of total dietary fibre (following fermentation of TDF)
	The indigestible quantity of SDF and IDF was measured using above methods from 5 mL of the aliquots of the fermentation broth at each time point. The sum of both SDF and IDF was considered as the indigestible amount of TDF.
	Determination of the percentage of dry matter disappearance
	The quantity of SCFA formation
	The quantity of SCFA formation was as acetate >propionate ≥ butyrate for all the combinations. Acetate   formation increased in the first 24 hours of fermentation, but   propionate and butyrate had a lower progression throughout the fermentation. The ...
	Digestion of fibre by Bifidobacterium and Lactobacillus
	Intra-genus combinations digested rice fibre less than the other combinations (Table 2), with the amount of undigested fibre appearing to be strain specific. Among the mix combinations, combinations that contained Bifidobacterium showed a reduced leve...
	SCFA formation based on the type of fibre
	The amount of metabolites formed varied with the different substrates. All the co-cultures formed a greater amount of SCFA with TDF than with the IDF and SDF (Figure 2). This indicates that the most preferred fibre fraction was TDF for selected microb...
	Discussion
	Conclusion
	References


