66 research outputs found

    Drive-style emission testing on the latest two Honda hybrid technologies

    Get PDF
    Introduction Hybrid technology is seen by many as a potential solution to reduce vehicle emissions in cities. However type approval tests of hybrid vehicles measure emission levels comparable to those of conventional cars in the same market segment. It has been argued that type approval tests do not represent the reality of emission in cities therefore, to quantify the real emission of hybrids and to compare them with those of conventional vehicles in the same conditions, an emission measurement campaign was organised. Acquisition campaign Three Honda cars, one conventional (the Civic 2.0) and two hybrids (the Civic IMA and the Civic Hybrid), equipped to collect emissions as well as the engine and vehicle working parameters were driven three times by twenty drivers on the same urban route. Drivers were asked to drive normally and not requested to do anything special but to scrupulously follow the given itinerary. Results Two main results were obtained: average and maximum emission levels for the three cars are quantified; the effects of the drivers on such levels assessed. The conventional car (with two people and 250 kg of measurement tools onboard) consumes an average of 12.6 l/100 km, its CO2 emissions range between 200 g/km and 300 g/km with an average of 260 g/km. CO emissions range between 0.25 g/km and 6.25 g/km (Euro IV limit is 1 g/km) with an average of 2 g/km. The most recent of the two tested hybrids consume in average 8.23 l/100 km and emits between 150 and 230 g/km of CO2 with an average of about 180 g/km; it emits virtually no CO in the majority of cases but can reach up to 1.8 g/km and average CO emissions are about 0.2 g/km. The hybrid performs always better than the conventional; in terms of CO2 and consumption it can have up to a 30% reduction and in terms of CO up to 90% reduction. Conclusions The wideness of the measured ranges depends mostly on the drivers. Women tend to consume and emit less than men. The reason for this is the different way they use the accelerator pedal; they push it less and keep it steadier. In other word the standard deviation of the accelerator position (or throttle) is lower. It is here shown how a correlation exist between the throttle standard deviation and the emissions which justify using such parameter as the indicator of drive-style

    Exhaust Energy Recovery with Variable Geometry Turbine to Reduce Fuel Consumption for Microcars

    Get PDF
    The objective proposed by EU to reduce by about 4%/year CO2 emission of internal combustion engines for the next years up to 2030, requires to increase the engine efficiency and accordingly improving the technology. In this framework, hybrid powertrains can have the possibility of a deep market penetration since they may recover energy during brake, allow the engine to operate in better efficiency conditions and with less transients, Moreover, they can recover a large amount of energy lost through the exhaust and use it to reduce fuel consumption. This paper concerns the modification of a conventional two in-line cylinders Diesel engine (440 cm3) adding a variable geometry turbine (VGT) coupled with a generator. The turbine is used to recover exhaust gas energy that otherwise would be lost. The generator, connected to the turbo shaft, converts mechanical energy into electrical energy and is used to charge the vehicle battery or the auxiliaries. The aim of this work is reducing fuel consumption by replacing the alternator with a kind of electric turbo-compounding system to drive vehicle auxiliaries. If the selected turbine recovers enough energy to power auxiliaries, the alternator, which usually has low efficiency, can be removed. Along these lines, fuel consumption savings can be achieved. At a later stage, a microcar has been tested on WLTC (Class 1) driving cycle. The results show fuel consumption reduction of 6 to 9%, depending on VGT size. Indeed, four different VGT sizes have been analyzed to choose the optimal configuration that reflects a compromise between energy recovery and fuel consumption reductions

    Spazia-HPP: Hybrid plug-in for small vehicle

    Get PDF
    This paper presents a novel concept, the Hybrid Power Pack (HPP), which consists of a hybridization kit for transforming small city cars, powered by an original diesel engine, into a parallel hybrid vehicle. The study was jointly conducted by the University of Rome “Sapienza” and the Enea Casaccia research center. The idea is to design a hybrid powertrain that can be installed in a typical microcar, which means that all systems and components will be influenced by the limited space available in the motor compartment of the vehicle. In this paper the details of the mechanical and electrical realization of the powertrain will be discussed and the simulation of a small city car equipped with HPP will be presented and the results discussed and analyzed. The hybrid system also includes the battery pack which is composed of twenty-four Li-ion cells made by EIG, connected in series. The storage system is controlled as regards the voltage and temperature by a Battery Management System (BMS). All the above components are connected and managed by a control unit. The HPP presented in this paper obtains a reduction in fuel consumption higher than 20%. The solution presented with the HPP with its management strategy and the addition of the “plug-in function” makes the hybrid vehicle suitable in terms of performance and consumption in every driving conditions. The ideal strategy behind the “plug-in function” could represent a guideline for further achievements and experimentations, because it offers a simple hardware layout and a real reduction in fuel consumption

    Lithium-Ion/Supercapacitors Storage System Powered Microcar: Development and Testing☆

    Get PDF
    Abstract The use of SuperCapacitors together with the lead-acid battery storage on electric vehicles have the advantage of improving the vehicle range and life-cycle of the lead-acid batteries. An urban City car, was tested on cycle ECE15, (the urban part of the type approval procedure of vehicles, the NEDC) and an automatic tool and procedure to run it on the dynamometer chassis has been developed. The results of the experimentation show the advantages in adoption of hybrid storage (Li-Ion + UC) systems in terms of range are lower (+5%) than those obtained with lead-acid + UC (+50%)

    Quantitative Analysis of Efficiency Improvement of a Propulsion Drive by Using SiC Devices: A Case of Study

    Get PDF
    One of the emerging research topics in the propulsion drive of the electric vehicles is the improvement in the efficiency of its component parts, namely, the propulsion motor and the associated inverter. This paper is focused on the efficiency of the inverter and analyzes the improvement that follows from the replacement of the silicon (Si) IGBT devices with silicon carbide (SiC) MOSFETs. To this end, the paper starts by deriving the voltage-current solicitations of the inverter over the working torque-speed plane of the propulsion motor. Then, a proper model of the power losses in the inverter over a supply period of the motor is formulated for the two types of device, including the integrated freewheeling diode. By putting together the voltage-current solicitations and the device power losses, the efficiency maps of the Si IGBT and SiC MOSFET inverters are calculated and compared over the torque-speed plane. The results for the Si IGBT inverter are supported by measurements executed on a marketed C-segment compact electric car, while the SiC MOSFET loss model is validated by an on-purpose built test bench. Finally, the overall efficiency of the propulsion drive is calculated by accounting for the motor efficiency. Main outcomes of the paper is a quantitative evaluation of both the improvement in the efficiency achievable with the SiC MOSFETs and the ensuing increase in the electric car range

    Advantages of retrofitting old electric buses and minibuses

    Get PDF
    Abstract Old electric buses and minibuses equipped with obsolete energy storage systems are today circulating on the roads all over the world. A minibus prototype equipped with Ion-Lithium batteries developed in the ENEA Casaccia Research Centre demonstrated that an old minibus can be retrofitted by replacing the old lead acid batteries pack with a new pack assembled with LiFePO4 electrochemistry. The new batteries provide sufficient power to the electric motor, an amount of energy to cover nearly 30 kilometers with a full charge, with a new battery load of 50% of the previous battery pack. The new technology allows fast charging, thus solving the problem linked due to the long periods requested to charge of the conventional batteries. For example during public transport service, the minibus can be charged with only twenty minutes, allowing such operation at the terminus while waiting for the passengers. A "depleting" strategy can be applied in order to allow the minibus to be operating all the day with several charges at the stops. In this paper, the performance of a retrofitted minibus in comparison with the same minibus equipped with old generation batteries are reported. The economic benefits for the retrofitted minibus in comparison with a new minibus purchased from factories are also reported

    Dynamic Elastic Modulus Variability in Anisotropic and Isotropic Materials: Comparison by Acoustic Emission

    Get PDF
    This study compared the variation of the dynamic elastic modulus (E) of three types of composite pipes made by the filament winding process and a steel alloy specimen, according to signal source changes. The specimens were produced with three different winding angles, i.e., ±50°, ±52.5°, and ±55°. The moduli were obtained through a known signal source and the angular variation, according to two sensors positioned over the specimen's surface. In a previous article, the variation in the velocity of acoustic emission (AE) signals, performed in the same type of pipes, was discussed based on the standards for glass fiber-reinforced epoxy (GFRE) filament wound specimens. This work took these preliminary findings to compare with the results found for steel alloy pipes (SAE 1020). This data was used with appropriate equations to determine the dynamic elastic moduli of each material. It was found that, even for small angular differences, the modulus changes position concerning the lamination angle. Thus, the lower the quality control, the lower the final product with composite materials. As expected, for isotropic materials such as steel alloys, the modulus remains constant along the angles, while for anisotropic ones, it is dependent on the principal directions of stress and strain, or on the other hand, dependent on the correlation between the angular wave velocity of the AE signals

    The "Smart Ring" Experience in l'Aquila (Italy): Integrating Smart Mobility Public Services with Air Quality Indexes

    Get PDF
    This work presents the "City Dynamics and Smart Environment" activities of the Smart Ring project, a model for the smart city, based on the integration of sustainable urban transport services and environmental monitoring over a 4–5-km circular path, the "Smart Ring", around the historical center of l'Aquila (Italy). We describe our pilot experience performed during an experimental on-demand public service electric bus, "SmartBus", which was equipped with a multi-parametric air quality low-cost gas electrochemical sensor platform, "NASUS IV". For five days (28–29 August 2014 and 1–3 September 2014), the sensor platform was installed inside the SmartBus and measured air quality gas compounds (nitrogen dioxide, carbon oxide, sulfur dioxide, hydrogen sulfide) during the service. Data were collected and analyzed on the bases of an air quality index, which provided qualitative insights on the air status potentially experienced by the users. The results obtained are in agreement with the synoptic meteorological conditions, the urban background air quality reference measurements and the potential traffic flow variations. Furthermore, they indicated that the air quality status was influenced by the gas component NO 2 , followed by H 2 S, SO 2 and CO. We discuss the features of our campaign, and we highlight the potential, limitations and key factors to consider for future project designs
    • 

    corecore