7 research outputs found

    A unified rule to estimate multiaxial elastoplastic notch stresses and strains under in-phase proportional loadings

    Get PDF
    Several methods can be used to estimate elastoplastic (EP) notchtip  stresses and strains from linear elastic calculations, providing EP stress and strain concentration factors. For uniaxial load histories, Neuber’s and Glinka’s rules are perhaps the most used. For non-proportional multiaxial histories, such corrections require incremental plasticity calculations to correlate stresses and strains at the notch root, a quite challenging task. However, for in-phase proportional multiaxial histories, where the principal directions do not change and the load path in a stress diagram follows a straight line, approximate methods can be used without requiring an incremental approach. Most of these methods are based on Neuber’s rule, so they usually result in conservative predictions, especially in plane strain-dominated cases associated with sharp notches. In this work, a Unified Notch Rule (UNR) is proposed for uniaxial and in-phase proportional multiaxial histories. The UNR can reproduce Neuber’s or Glinka’s rules, interpolate their notch-tip behaviors, or even extrapolate them for notches with increased constraint. Moreover, the UNR also allows a non-zero normal stress perpendicular to the free-surface. The proposed method predictions are compared with elastoplastic Finite Element calculations on notched shafts

    A three-dimensional elastoplastic analysis of mixed-mode

    No full text
    Engineering problems that involve fatigue crack growth and fracture frequently can be studied by taking into account only mode-I features. However, many important problems that involve combined mode I and II loadings cannot be properly analyzed by a pure mode-I approach, which in particular may not be sufficient to estimate fracture toughness for practical purposes in such cases. Such mixed-mode problems involve crack orientation and/or load conditions that lead to combined local Stress Intensity Factors (SIFs) KI/KII around the crack front. Using multiaxial crack tip condition characterized by the crack inclination angle βin a mixed-mode KI/KII modified single edge tension SE(T) specimen, such mixed-mode effects on plastic zone shapes, volumes and plastic work UPL are taken into account to evaluate problems that involve fatigue and fracture

    Neotropical freshwater fisheries : A dataset of occurrence and abundance of freshwater fishes in the Neotropics

    No full text
    The Neotropical region hosts 4225 freshwater fish species, ranking first among the world's most diverse regions for freshwater fishes. Our NEOTROPICAL FRESHWATER FISHES data set is the first to produce a large-scale Neotropical freshwater fish inventory, covering the entire Neotropical region from Mexico and the Caribbean in the north to the southern limits in Argentina, Paraguay, Chile, and Uruguay. We compiled 185,787 distribution records, with unique georeferenced coordinates, for the 4225 species, represented by occurrence and abundance data. The number of species for the most numerous orders are as follows: Characiformes (1289), Siluriformes (1384), Cichliformes (354), Cyprinodontiformes (245), and Gymnotiformes (135). The most recorded species was the characid Astyanax fasciatus (4696 records). We registered 116,802 distribution records for native species, compared to 1802 distribution records for nonnative species. The main aim of the NEOTROPICAL FRESHWATER FISHES data set was to make these occurrence and abundance data accessible for international researchers to develop ecological and macroecological studies, from local to regional scales, with focal fish species, families, or orders. We anticipate that the NEOTROPICAL FRESHWATER FISHES data set will be valuable for studies on a wide range of ecological processes, such as trophic cascades, fishery pressure, the effects of habitat loss and fragmentation, and the impacts of species invasion and climate change. There are no copyright restrictions on the data, and please cite this data paper when using the data in publications
    corecore