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ABSTRACT. Several methods can be used to estimate elastoplastic (EP) notch-
tip stresses and strains from linear elastic calculations, providing EP stress and 
strain concentration factors. For uniaxial load histories, Neuber’s and Glinka’s 
rules are perhaps the most used. For non-proportional multiaxial histories, 
such corrections require incremental plasticity calculations to correlate 
stresses and strains at the notch root, a quite challenging task. However, for 
in-phase proportional multiaxial histories, where the principal directions do 
not change and the load path in a stress diagram follows a straight line, 
approximate methods can be used without requiring an incremental approach. 
Most of these methods are based on Neuber’s rule, so they usually result in 
conservative predictions, especially in plane strain-dominated cases associated 
with sharp notches. In this work, a Unified Notch Rule (UNR) is proposed 
for uniaxial and in-phase proportional multiaxial histories. The UNR can 
reproduce Neuber’s or Glinka’s rules, interpolate their notch-tip behaviors, or 
even extrapolate them for notches with increased constraint. Moreover, the 
UNR also allows a non-zero normal stress perpendicular to the free-surface. 
The proposed method predictions are compared with elastoplastic Finite 
Element calculations on notched shafts. 
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INTRODUCTION 
 

irection-sensitive materials like most metallic alloys tend to initiate a single dominant microcrack under fatigue 
loadings. Under multiaxial loading conditions this behavior tends to be well modeled by critical-plane fatigue-
damage models, which search for the material plane at the critical point where the corresponding accumulated 

damage parameter is maximized. 
D 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Italian Group Fracture (IGF): E-Journals / Gruppo Italiano Frattura

https://core.ac.uk/display/228804082?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

                                                     M. A. Meggiolaro et alii, Frattura ed Integrità Strutturale, 38 (2016) 128-134; DOI: 10.3221/IGF-ESIS.38.17 
 

129 
 

To calculate elastoplastic (EP) strains from a given multiaxial stress history, it is usually necessary to adopt an incremental 
plasticity formulation, which integrates non-linear differential equations to obtain the stress-strain behavior [1]. In the 
presence of notches, a much simpler approach is to perform a single linear elastic (LE) Finite Element (FE) calculation on 
the entire piece for a static unit value of each applied loading. The resulting values at the notch root are called pseudo-
stresses and pseudo-strains, which are fictitious quantities calculated using the theory of elasticity at the critical point of the 
piece, while assuming that the material follows Hooke’s law [2]. These pseudo values are represented here with a “~” symbol 
on top of each variable.  

Under in-phase proportional loadings, approximate models to obtain the stress and the strain concentration factors Kand 
Kcan be used to avoid computationally-intensive incremental plasticity calculations. They provide notch corrections that 
try to correlate pseudo and notch-tip values using a scalar parameter such as the Mises equivalent stress. The main EP notch 
models for in-phase proportional histories are the constant ratio [3], Hoffmann-Seeger's [4-5], and Dowling's [6] models. 
These models require some variable definitions, namely: 
 i and i : pseudo principal stresses and strains at the notch tip, where i 1, 2, 3. 

 i  and i : actual elastoplastic principal stresses and strains at the notch tip. 
 2 and 3: biaxiality ratios between the principal stresses, 2 2/1 and 3 3/1, both assumed between 1 and 1.
 2 and 3: biaxiality ratios between principal strains, where2 2/1 and 3 3/1, also assumed between 1 and 1; and 
  : effective Poisson ratio, with 0.5    in the EP case, where  is the (LE) Poisson ratio. 

Dowling’s model [6] assumes that the principal stresses1 and 2 act on the free surface of the critical point (thus 3 0), 
but it considers that both 2 and 2 are constant, estimating them from the pseudo-stresses and pseudo-strains: 
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The model then directly correlates1 and 1 using effective Ramberg-Osgood parameters E* and Hc*: 
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In notched components, assuming that the principal directions of the EP stresses and pseudo-stresses are equal, a reasonable 
supposition, then a variation of Neuber’s rule [7] could be used to calculate the EP notch-tip 1 (and then 1) from the 
pseudo 1 :  

 
hc

cE E H

1
1 1 1

1 1 1 1 1 1* * *

       
                   

   (Dowling)     (4) 

 
The above equation does not require a plastic term on the left hand side, because the pseudo-stresses and pseudo-strains 
are, by definition, LE. Finally, the other notch-tip EP principal stresses and strains are then obtained from 1 and 1: 
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THE UNIAXIAL UNIFIED NOTCH RULE (UNR) 

 
oting that Glinka’s rule [8] usually underestimates while Neuber’s rule [7] overestimates notch-tip stresses and 
strains, when compared to experimental results and FE analyses, a unified incremental rule (UNR) has been 
proposed by Ye et al. in [9], which returns values in-between them. For a monotonic uniaxial loading in the x 

direction, it states that 
 

x x ED x x ED x x x xd d d d(1 ) (1 )                        (6) 

 
where 0  ED  1 was called the energy dissipation coefficient, assumed in [9] as a material parameter, estimated based on 
an energy argument as ED  (12hc)/(1hc), where hc is the cyclic exponent of Ramberg-Osgood’s equation. However, 
ED might depend not only on the material but also on the notch geometry and constraint factor. This coefficient ED can 
also be regarded as a fitting parameter if experimental data or reliable EP FE analyses are available for its calibration. 

To extend the UNR rule to multiaxial problems, a deviatoric version of Eq. 6 is proposed in this work: 
 

x x U x x U x x x xs de e ds s de e ds( ) (2 )                 (7) 

 
where x x y zs (2 ) 3     and x x y ze (2 ) 3     are the deviatoric stresses and strains in the x direction at the 

notch tip, while Uc  (1ED) is called the notch constraint factor, with values1  U  2 to interpolate the Incremental 
Neuber rule [10-11] (for which U  1) and a similar Incremental Glinka rule (which has U  2). 

As the deviatoric stresses sx, sy and sz are linearly-dependent, since sx  sy  sz  0, it is possible to reduce the deviatoric 
stress and strain space dimensions using: 
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Assuming that Eq. 7 is valid for the transformed deviatoric stresses and strains from Eqs. 8 and 9, then 
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where, as explained before, the symbol “~”  is used for pseudo-values calculated from LE analyses. 
The Unified Notch Rule (UNR) proposed in this work can then be obtained from the integration of Eq. 10, which can be 
used for both uniaxial and in-phase proportional histories. For uniaxial histories, this integration results in the scalar UNR: 
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where U is the effective notch constraint factor. This equation can reproduce Neuber for U 1 and thus U 1  , or 

Glinka’s rule for U 2 and thus 2 (1 )U ch   .  

Although conceptually different, U shares some similarities with Newman’s constraint factor [12], varying from 1.0 under 
plane stress conditions (where Neuber’s rule is recommended) to usually more than 3.0 under plane strain. Thus, both U 

and Newman’s reflect increased stress-state constraint and associated plasticity decrease at the critical point, however 
using U at notch tips and Newman’s at crack tips. 
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THE MULTIAXIAL UNIFIED NOTCH RULE 

 
he multiaxial version of the UNR assumes in-phase proportional loading under free-surface conditions, supposing 
xz = yz = 0, but allows the presence of a surface normal z ≠ 0, where the z axis is assumed perpendicular to the 
surface, and the x and y axes are aligned with the remaining principal directions, with x in the direction of the 

maximum absolute principal stress. Therefore, the principal notch tip stresses x  1, y  2, and z  3 are assumed to 
satisfy|x|  |y| and |x|  |z| during the entire load history. The involved variables are the same as the ones defined 
before, in addition to an elastic and plastic separation of the strain biaxiality ratios, through: 
 2el and 3el: biaxiality ratios between principal elastic strains, where 2el 2el/1el and 3el 3el/1el are both assumed 

between 1 and 1; and 
 2pl and 3pl: same definition, but for plastic strains (for pressure-insensitive materials, where 1pl 2pl3pl0, it follows 

that 12pl 3pl 0 and thus 2pl 3pl1). 
Since the multiaxial loading history is assumed here to be proportional, the deviatoric stress increment is always parallel to 
the plastic straining direction, so the Prandtl-Reuss plastic flow rule [1] gives, for the normal deviatoric strain components, 
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where P is called the generalized plastic modulus (proportional to the slope of the stress vs. plastic strain curve at the current 
stress state), and all shear increments are zero since x, y, and z are defined in the principal directions. Integrating the above 
equation using the plastic biaxiality ratio definitions, then 
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Neglecting the isotropic hardening transient, let’s assume that the material follows Ramberg-Osgood with cyclic constant 
Hc and exponent hc. Moreover, assuming that this proportional loading is balanced, i.e. it does not cause ratcheting or mean 
stress relaxation, then a Mróz multi-surface hardening model can be adopted [1] (instead of the more general non-linear 
kinematic hardening models). To improve accuracy, let’s adopt an infinite number of hardening surfaces, as discussed in 
[13], see Fig. 1. From the calibration of the Mróz model, the generalized plastic modulus P Pi for the hardening surface 
with radius ri becomes 

 

  hc
c c i ciP h H r H 1 1(2 3)            (14) 

 
Consider a monotonic proportional loading departing from the origin of the deviatoric stress space, as shown in Fig. 1, 
assuming x, y and z as principal directions. In this case, the radius ri of the current active surface from the Mróz model is 
equal to the norm (and thus the Mises equivalent value) of the current stress state. Replacing the values of P  Pi and ri into 
Eq. 13, and using the plastic strain incompressibility condition 2pl 3pl 1, it follows that 
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Figure 1: Mróz infinite-surface hardening model for a monotonic proportional loading. 
 

Dowling’s model for in-phase proportional loadings is a particular case of the more general in-phase proportional UNR, 
setting U 1  (to reproduce Neuber’s rule) and also 3 0 (free-surface with 3 0), assuming as well that2pl 2el based 

on, and that 3pl  3el  based on an effective Poisson ratio  . 

Both Dowling’s and UNR models assume the nominal section (away from the notch) remains LE. In other words, they are 
valid even under general yielding of the net cross section, but they do not account for yielding of the gross cross section. 
To perform this correction, the pseudo principal stress 1 is represented as the product of a LE stress concentration factor 

Kt multiplied by a nominal stress n1, i.e. n tK1 1 /   , where n1 is assumed to follow Ramberg-Osgood, giving 
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VERIFICATION OF THE UNR WITH ELASTOPLASTIC FINITE ELEMENTS 
 

he proposed UNR and Dowling’s classic notch rule are checked against elastoplastic (EP) Finite Element (FE) 
calculations, for multiaxial in-phase proportional tension-torsion problems. The comparison is based on the 
calculation of the peak EP stresses and strains at a notched solid shaft with largest diameter 50.8 mm and a semi-

circular U-notch with a sharp radius 0.254 mm. The shaft is assumed made of a heat-treated 1070 steel with Young modulus 
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E  210GPa, Poisson ratio0.3, and Ramberg-Osgood parameters Hc 1736MPa and hc = 0.199, using data reported in 
[14]. For the EP calculations all simulations were carried out using ANSYS software, using the SOLID186 3D elements 
with 20 nodes each and 3 degrees of freedom per node. The model used for the EP FE simulations is illustrated in Fig. 2, 
and its notch tip grid is depicted in Fig. 3.    

 
Figure 2: The FE model for the sharply notched shaft. 

 
Figure 3: The grid around the notch tip.  

 

 
Figure 4: Predicted and FE-calculated EP strain and stress. 
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Fig. 4 shows the ratio between the EP and the pseudo Mises strain  Mises Mises and stress  Mises Mises  for a particular 
case of a tension-torsion multiaxial loading assuming a proportionality stress ratio between equivalent shear and normal 

nominal stresses   3R .The LE stress concentration factors for this sharply notched shaft are Ktσ = 6.70 for normal 
stresses and Ktτ = 3.75 for pure shear stresses. The two solid lines for both strains and stresses show the numerically obtained 
EP results obtained from the FE simulations, which are overestimated by both Neuber’s (U1, the rule adopted in 
Dowling’s multiaxial model) and Glinka’s rules (U 2). The third dashed lines also for both strains and stresses are the 
better estimates obtained from the proposed UNR, calibrated for U 1.979. These results show that the proposed rule is 
able to improve significantly the traditional estimates from Neuber’s and Glinka’s models, in particular for notched 
components with high transversal constraints around the notch tip, the case of the studied sharply notched shaft. Finally, 
as expected, all predictions tend to the       1Mises Mises Mises Mises  under low stresses. 
 
 
CONCLUSIONS 
 

n this work, a Unified Notch Rule (UNR) was proposed to predict elastoplastic stresses and strains at a notch roots 
from linear elastic calculations, for uniaxial and in-phase proportional multiaxial histories. The UNR can interpolate 
between Neuber’s and Glinka’s rules using its U parameter calibration to account for the magnitude of the transversal 

constraint around the notch tip, or even to extrapolate them to better reproduce increased constraint effects around sharp 
notch tips. Moreover, the proposed UNR allows biaxiality ratios 3 3/1  0, an improvement over Dowling’s model, 
which always assume 3 = 0. Even though the derivation of the UNR model assumed an integration for a monotonic load, 
the resulting equations could be applied to cyclic loadings, as long as they are also in-phase and proportional, and the 
appropriate biaxiality ratios can be assumed constant. 
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