16,682 research outputs found

    Quasinormal Modes of Charged Scalars around Dilaton Black Holes in 2+1 Dimensions: Exact Frequencies

    Full text link
    We have studied the charged scalar perturbation around a dilaton black hole in 2 +1 dimensions. The wave equations of a massless charged scalar field is shown to be exactly solvable in terms of hypergeometric functions. The quasinormal frequencies are computed exactly. The relation between the quasinormal frequencies and the charge of the black hole, charge of the scalar and the temperature of the black hole are analyzed. The asymptotic form of the real part of the quasinormal frequencies are evaluated exactly.Comment: 20 pages and 7 figures, some references are added and some removed. There are some changes to the text. arXiv admin note: text overlap with arXiv:hep-th/040716

    CAN JURISDICTIONAL UNCERTAINTY AND CAPITAL CONTROLS EXPLAIN THE HIGH LEVEL OF REAL INTEREST RATES IN BRAZIL? EVIDENCE FROM PANEL DATA

    Get PDF
    The phenomenon of high and persistent short-term real interest rates in Brazil has stimulated an extensive literature attempting to explain its causes. Among the various contributions on the topic, one that has received considerable attention is the article by Arida, Bacha, and Lara-Resende (2004) (henceforth, ABL), which argues that risks associated with the jurisdiction and currency inconvertibility are relevant determinants of the level of short-term real interest rates. In the present paper, we formulate a methodology based on ABL's definition of jurisdiction uncertainty, use a set of institutional variables that proxy the degree of jurisdictional uncertainty, build an index of currency inconvertibility based on capital controls and use them to test ABL's conjecture and variants of it. The results are by and large unfavorable not only to ABL's conjecture, but also to variants of their argument. The results further indicate that traditional monetary and fiscal factors are far more relevant to explain the level of short-term real interest rates than the binomial jurisdictional uncertainty/ currency inconvertibility is.

    Functional approach to quantum friction: effective action and dissipative force

    Get PDF
    We study the Casimir friction due to the relative, uniform, lateral motion of two parallel semitransparent mirrors coupled to a vacuum real scalar field, Ď•\phi. We follow a functional approach, whereby nonlocal terms in the action for Ď•\phi, concentrated on the mirrors' locii, appear after functional integration of the microscopic degrees of freedom. This action for Ď•\phi, which incorporates the relevant properties of the mirrors, is then used as the starting point for two complementary evaluations: Firstly, we calculate the { in-out} effective action for the system, which develops an imaginary part, hence a non-vanishing probability for the decay (because of friction) of the initial vacuum state. Secondly, we evaluate another observable: the vacuum expectation value of the frictional force, using the { in-in} or Closed Time Path formalism. Explicit results are presented for zero-width mirrors and half-spaces, in a model where the microscopic degrees of freedom at the mirrors are a set of identical quantum harmonic oscillators, linearly coupled to $\phi

    New Charged Dilaton Solutions in 2+1 Dimensions and Solutions with Cylindrical Symmetry in 3+1 Dimensions

    Full text link
    We report a new family of solutions to Einstein-Maxwell-dilaton gravity in 2+1 dimensions and Einstein-Maxwell gravity with cylindrical symmetry in 3+1 dimensions. A set of static charged solutions in 2+1 dimensions are obtained by a compactification of charged solutions in 3+1 dimensions with cylindrical symmetry. These solutions contain naked singularities for certain values of the parameters considered. New rotating charged solutions in 2+1 dimensions and 3+1 dimensions are generated treating the static charged solutions as seed metrics and performing SL(2;R)SL(2;R) transformations.Comment: Latex. No figure

    Flexible generation of correlated photon pairs in different frequency ranges

    Full text link
    The feasibility to generate correlated photon pairs at variable frequencies is investigated. For this purpose, we consider the interaction of an off-resonant laser field with a two-level system possessing broken inversion symmetry. We show that the system generates non-classical photon pairs exhibiting strong intensity-intensity correlations. The intensity of the applied laser tunes the degree of correlation while the detuning controls the frequency of one of the photons which can be in the THz-domain. Furthermore, we observe the violation of a Cauchy-Schwarz inequality characterizing these photons.Comment: 5 pages, 4 figure

    Decoherence induced by a fluctuating Aharonov-Casher phase

    Full text link
    Dipoles interference is studied when atomic systems are coupled to classical electromagnetic fields. The interaction between the dipoles and the classical fields induces a time-varying Aharonov-Casher phase. Averaging over the phase generates a suppression of fringe visibility in the interference pattern. We show that, for suitable experimental conditions, the loss of contrast for dipoles can be observable and almost as large as the corresponding one for coherent electrons. We analyze different trajectories in order to show the dependence of the decoherence factor with the velocity of the particles.Comment: 13 pages, 3 figures. To appear in Phys. Rev.

    Fourth order perturbative expansion for the Casimir energy with a slightly deformed plate

    Full text link
    We apply a perturbative approach to evaluate the Casimir energy for a massless real scalar field in 3+1 dimensions, subject to Dirichlet boundary conditions on two surfaces. One of the surfaces is assumed to be flat, while the other corresponds to a small deformation, described by a single function η\eta, of a flat mirror. The perturbative expansion is carried out up to the fourth order in the deformation η\eta, and the results are applied to the calculation of the Casimir energy for corrugated mirrors in front of a plane. We also reconsider the proximity force approximation within the context of this expansion.Comment: 10 pages, 3 figures. Version to appear in Phys. Rev.

    The 2+1 charged black hole in topologically massive Electrodynamics

    Full text link
    The 2+1 black hole coupled to a Maxwell field can be charged in two different ways. On the one hand, it can support a Coulomb field whose potential grows logarithmically in the radial coordinate. On the other, due to the existence of a non-contractible cycle, it also supports a topological charge whose value is given by the corresponding Abelian holonomy. Only the Coulomb charge, however, is given by a constant flux integral with an associated continuity equation. The topological charge does not gravitate and is somehow decoupled from the black hole. This situation changes abruptly if one turns on the Chern-Simons term for the Maxwell field. First, the flux integral at infinity becomes equal to the topological charge. Second, demanding regularity of the black hole horizon, it is found that the Coulomb charge (whose associated potential now decays by a power law) must vanish identically. Hence, in 2+1 topologically massive electrodynamics coupled to gravity, the black hole can only support holonomies for the Maxwell field. This means that the charged black hole, as the uncharged one, is constructed from the vacuum by means of spacetime identifications.Comment: 4 pages, no figures, LaTex, added reference
    • …
    corecore