14 research outputs found

    A rare-earth free SHEV powertrain and its control

    Get PDF
    A topology of a candidate rare-earth free Series Hybrid Electric Vehicle (SHEV) powertrain and the coordinated control of its components is presented in this paper. The powertrain is fed with a field controlled synchronous generator and a controlled battery bank and drives a 60 kW rare-earth free traction motor. Simulation results are presented for normal operating conditions and two faulted-mode operating scenarios where the power electronic converter in the system is faulted are investigated

    Design of a stator for a high-speed turbo-generator with fixed permanent magnet rotor radius and volt-ampere constraints

    Get PDF
    This paper investigates high-speed surface PM machine design for portable turbo-generator applications. The rotor radius is fixed to achieve certain optimal characteristics of the magnet retention mechanism. The basis of this paper is to design and select the stator. The stator designs are populated by different slot/pole combinations, winding arrangements and over a range of possible stack lengths. However, the design is constrained by physical diameter, stack length and electrical volt-ampere constraints. A large number of preliminary machine designs do not satisfy the specified turbo-generator torque/speed requirements under the given volt-ampere constraints and therefore it is ineffective to perform Finite Element analysis on all preliminary design variations. In order to establish the feasibility of a machine design to fulfill the specified turbo-generator torque/speed requirements, the concept of inductance-limits is presented and then linked with stator design parameters. By application of this analysis strategy, a confined optimal set of stator designs are obtained and are subjected to detailed finite element simulations. A final machine design is selected and fabricated. Experimental results are presented for the validation of the final machine design

    Impact of soft magnetic material on design of high speed permanent magnet machines

    Get PDF
    This paper investigates the effect of two soft magnetic materials on a high speed machine design, namely 6.5% Silicon Steel and Cobalt-Iron alloy. The effect of design parameters on the machine performance as an aircraft starter-generator is analysed. The material properties which include B-H characteristics and the losses are obtained at different frequencies under an experiment and used to predict the machine performance accurately. In the investigation presented in this paper, it is shown that machines designed with 6.5% Silicon Steel at a high core flux density has lower weight and lower losses than the Cobalt-Iron alloy designs. This is mainly due to the extra weight contributed by the copper content especially in the end-windings. Due to the high operating frequencies, the core-losses in the Cobalt-Iron machine designs are found to outweigh the copper-losses incurred in the Silicon Steel machines. It is also shown that change in stack length/number of turns has a considerable effect on the copper losses at starting, however has no significant advantage on rated efficiency which happens to be in a field-weakening operating point. It is also shown that the performance of the machine designs depend significantly on material selection and the operating point of the core. The implications of the variation of design parameters on the machine performance is discussed and provides insight into the influence of parameters that effect overall power density

    Magnetic Equivalent Circuit Modelling of Synchronous Reluctance Motors

    No full text
    This paper proposes a modelling technique for Synchronous Reluctance Motors (SynRMs) based on a generalized Magnetic Equivalent Circuit (MEC). The proposed model can be used in the design of any number of stator teeth, rotor poles, and rotor barrier combinations. This technique allows elimination of infeasible machine solutions during the initial machine sizing stage, resulting in a lower cohort of feasible machine solutions that can be further optimized using finite element methods. Therefore, saturation effects, however, are not considered in the modelling. This paper focuses on modelling a generic structure of the SynRM in modular form and is then extended to a full SynRM model. The proposed model can be iteratively used for any symmetrical rotor pole and stator teeth combination. The developed technique is applied to model a 4-pole, 36 slot SynRM as an example, and the implemented model is executed following a time stepping strategy. The motor characteristics such as flux distribution and torque of the developed SynRM model is compared with finite elemental analysis (FEA) simulation results

    Magnetic Equivalent Circuit Modelling of Synchronous Reluctance Motors

    No full text
    This paper proposes a modelling technique for Synchronous Reluctance Motors (SynRMs) based on a generalized Magnetic Equivalent Circuit (MEC). The proposed model can be used in the design of any number of stator teeth, rotor poles, and rotor barrier combinations. This technique allows elimination of infeasible machine solutions during the initial machine sizing stage, resulting in a lower cohort of feasible machine solutions that can be further optimized using finite element methods. Therefore, saturation effects, however, are not considered in the modelling. This paper focuses on modelling a generic structure of the SynRM in modular form and is then extended to a full SynRM model. The proposed model can be iteratively used for any symmetrical rotor pole and stator teeth combination. The developed technique is applied to model a 4-pole, 36 slot SynRM as an example, and the implemented model is executed following a time stepping strategy. The motor characteristics such as flux distribution and torque of the developed SynRM model is compared with finite elemental analysis (FEA) simulation results

    Hybrid Propulsion Systems for Remotely Piloted Aircraft Systems

    No full text
    The development of more efficient propulsion systems for aerospace vehicles is essential to achieve key objectives. These objectives are to increase efficiency while reducing the amount of carbon-based emissions. Hybrid electric propulsion (HEP) is an ideal means to maintain the energy density of hydrocarbon-based fuels and utilize energy-efficient electric machines. A system that integrates different propulsion systems into a single system, with one being electric, is termed an HEP system. HEP systems have been studied previously and introduced into Land, Water, and Aerial Vehicles. This work presents research into the use of HEP systems in Remotely Piloted Aircraft Systems (RPAS). The systems discussed in this paper are Internal Combustion Engine (ICE)–Electric Hybrid systems, ICE–Photovoltaic (PV) Hybrid systems, and Fuel-Cell Hybrid systems. The improved performance characteristics in terms of fuel consumption and endurance are discussed

    A Novel Six-Phase V-Shaped Flux-Switching Permanent Magnet Generator for Wind Power Generation

    No full text
    Flux-switching permanent magnet (FSPM) machines have attracted wide attention in many rotating applications that require high-power density. In this research, we propose for the first time a novel six-phase FSPM generator with a stator featuring a V-shaped flux-focusing magnet arrangement. The design is targeted for low-speed wind power generation. To achieve the design objectives as a wind generator, the highly comprehensive structural parameters, including the number of rotor poles, split ratio, and rotor pole width, are designed and optimized using 2D finite-element analysis. From findings, the optimal stator/rotor pole combination is discovered to be 12/19 for the considered power and speed requirements. When compared to the initial structure, the optimized structure of the V-shaped FSPM generator is found to produce a significant improvement in EMF, cogging torque, electromagnetic torque, power, and efficiency. The power-generating performance of the proposed FSPM generator is found to be outstanding when compared to the radial-flux PM generators described in the literature. Therefore, the proposed V-shaped FSPM generator is capable of being used for low-speed wind power generation. The machine configuration adjustment approach presented in this work can also be utilized for the design of permanent magnet wind generators
    corecore