39 research outputs found
Turbulence structure near a sharp density interface
The effects of a sharp density interface and a rigid flat plate on oscillating-grid induced shear-free turbulence were investigated experimentally. A two-component laser-Doppler velocimeter was used to measure turbulence intensities in and above the density interface (with matched refractive indices) and near the rigid flat plate. Energy spectra, velocity correlations, and kinetic energy fluxes were also measured. Amplification of the horizontal turbulent velocity, coupled with a sharp reduction in the vertical turbulent velocity, was observed near both the density interface and the flat plate. These findings are in agreement with some previous results pertaining to shear-free turbulence near rigid walls (Hunt & Graham 1978) and near density interfaces (Long 1978). The results imply that, near the density interface, the turbulent kinetic energy in the vertical velocity component is only a small fraction of the total turbulent kinetic energy and indicate that the effects of the anisotropy created by the density interface or the flat plate are confined to the large turbulence scales
Structure of Turbulence in Katabatic Flows below and above the Wind-Speed Maximum
Measurements of small-scale turbulence made over the complex-terrain
atmospheric boundary layer during the MATERHORN Program are used to describe
the structure of turbulence in katabatic flows. Turbulent and mean
meteorological data were continuously measured at multiple levels at four
towers deployed along the East lower slope (2-4 deg) of Granite Mountain. The
multi-level observations made during a 30-day long MATERHORN-Fall field
campaign in September-October 2012 allowed studying of temporal and spatial
structure of katabatic flows in detail, and herein we report turbulence and
their variations in katabatic winds. Observed vertical profiles show steep
gradients near the surface, but in the layer above the slope jet the vertical
variability is smaller. It is found that the vertical (normal to the slope)
momentum flux and horizontal (along the slope) heat flux in a slope-following
coordinate system change their sign below and above the wind maximum of a
katabatic flow. The vertical momentum flux is directed downward (upward)
whereas the horizontal heat flux is downslope (upslope) below (above) the wind
maximum. Our study therefore suggests that the position of the jet-speed
maximum can be obtained by linear interpolation between positive and negative
values of the momentum flux (or the horizontal heat flux) to derive the height
where flux becomes zero. It is shown that the standard deviations of all wind
speed components (therefore the turbulent kinetic energy) and the dissipation
rate of turbulent kinetic energy have a local minimum, whereas the standard
deviation of air temperature has an absolute maximum at the height of
wind-speed maximum. We report several cases where the vertical and horizontal
heat fluxes are compensated. Turbulence above the wind-speed maximum is
decoupled from the surface, and follows the classical local z-less predictions
for stably stratified boundary layer.Comment: Manuscript submitted to Boundary-Layer Meteorology (05 December 2014
An Energy-Water Corridor Along the US/Mexico Border: Changing the \u27Conversation\u27
Over the last decade, migration has become a divisive issue around the world. A large number of countries have erected barriers along their borders to prevent migration, leading to geopolitical tension. Climate change effects will likely exacerbate migration tensions, which will require bold and creative solutions to this difficult social predicament. Here we detail a plan to construct an energy-water corridor along a border that has been the focus of much attention recently: The U.S.-Mexico border. Our proposed solution helps to alleviate some of the negative effects of climate change, while providing energy and economic stimulus to an area that begs for sustainable development. The energy-water corridor will take advantage of the unique renewable energy resources along the border states and will use state-of-the-art water desalination and treatment systems to provide the resources for economic development in the region
ASIRI : an oceanâatmosphere initiative for Bay of Bengal
Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 97 (2016): 1859â1884, doi:10.1175/BAMS-D-14-00197.1.AirâSea Interactions in the Northern Indian Ocean (ASIRI) is an international research effort (2013â17) aimed at understanding and quantifying coupled atmosphereâocean dynamics of the Bay of Bengal (BoB) with relevance to Indian Ocean monsoons. Working collaboratively, more than 20 research institutions are acquiring field observations coupled with operational and high-resolution models to address scientific issues that have stymied the monsoon predictability. ASIRI combines new and mature observational technologies to resolve submesoscale to regional-scale currents and hydrophysical fields. These data reveal BoBâs sharp frontal features, submesoscale variability, low-salinity lenses and filaments, and shallow mixed layers, with relatively weak turbulent mixing. Observed physical features include energetic high-frequency internal waves in the southern BoB, energetic mesoscale and submesoscale features including an intrathermocline eddy in the central BoB, and a high-resolution view of the exchange along the periphery of Sri Lanka, which includes the 100-km-wide East India Coastal Current (EICC) carrying low-salinity water out of the BoB and an adjacent, broad northward flow (âŒ300 km wide) that carries high-salinity water into BoB during the northeast monsoon. Atmospheric boundary layer (ABL) observations during the decaying phase of the MaddenâJulian oscillation (MJO) permit the study of multiscale atmospheric processes associated with non-MJO phenomena and their impacts on the marine boundary layer. Underway analyses that integrate observations and numerical simulations shed light on how airâsea interactions control the ABL and upper-ocean processes.This work was sponsored by the U.S. Office of Naval Research (ONR) in an ONR Departmental Research Initiative (DRI), AirâSea Interactions in Northern Indian Ocean (ASIRI), and in a Naval Research Laboratory project, Effects of Bay of Bengal Freshwater Flux on Indian Ocean Monsoon (EBOB). ASIRIâRAWI was funded under the NASCar DRI of the ONR. The Indian component of the program, Ocean Mixing and Monsoons (OMM), was supported by the Ministry of Earth Sciences of India.2017-04-2
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers âŒ99% of the euchromatic genome and is accurate to an error rate of âŒ1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Small-Scale Anisotropy in Stably Stratified Turbulence; Inferences Based on Katabatic Flows
The focus of the current study is on the anisotropy of stably stratified turbulence that is not only limited to large scales and an inertial subrange but also penetrates to small-scale turbulence in the viscous/dissipation subrange on the order of the Kolmogorov scale. The anisotropy of buoyancy forces is well-known, including ensuing effects such as horizontal layering and pancakes structures. Laboratory experiments in the nineties by Van Atta and his students showed that the anisotropy penetrates to very small scales, but their experiments were performed only at a relatively low Reλ (i.e., at Taylor Reynolds numbers) and, therefore, did not provide convincing evidence of anisotropy penetration into viscous sublayers. Nocturnal katabatic flows having configurations of stratified parallel shear flows and developing on mountain slopes provide high Reynolds number data for testing the notion of anisotropy at viscous scales, but obtaining appropriate time series of the data representing stratified shear flows devoid of unwarranted atmospheric factors is a challenge. This study employed the âin situâ calibration of multiple hot-film-sensors collocated with a sonic anemometer that enabled obtaining a 90 min continuous time series of a âcleanâ katabatic flow. A detailed analysis of the structure functions was conducted in the inertial and viscous subranges at an Reλ around 1250. The results of DNS simulations by Kimura and Herring were employed for the interpretation of data
Recommended from our members
Technical Report -- Essentials of which will be published as a journal paper
Vertical Transport and Mixing in Complex Terrain Airsheds: Implementation of a Stable PBL Turbulence Parameterization for the Mesoscale Model MM5 The difficulties associated with parameterization of turbulence in the stable nocturnal atmospheric boundary layer have been a great challenge for the night-time predictions of mesoscale meteorological models such as MM5. As such, there is a general consensus on the need for better stable boundary-layer parameterizations. To this end, two new turbulence parameterizations based on the measurements of the Vertical Transport and Mixing (VTMX) field campaign were implemented and evaluated in MM5. A unique aspect of this parameterization is the use of a stability dependent turbulent Prandtl number that allows momentum to be transported by the internal waves, while heat diffusion is impeded by the stratification. This improvement alleviates the problem of over-prediction of heat diffusion under stable conditions, which is a characteristic of conventional PBL schemes, such as MRF and Blackadar schemes employed in MM5. The predictions made with the new PBL scheme for the complex terrain airshed of Salt Lake City were compared with those made with a default scheme of MM5 and with observations made during the VTMX campaign. The new schemes showed an improvement in predictions, particularly for the nocturnal near surface temperature. Surface wind predictions also improved slightly, but not to the extent of temperature predictions. The default MRF scheme showed a significantly warmer surface temperature than observed, which could be attributed to the enhanced vertical heat exchange brought about by its turbulence parameterization. The modified parameterizations reduced the surface sensible heat flux, thus enhancing the strength of the near surface inversion and lowering the temperature toward the observed values