38 research outputs found

    Turbulence structure near a sharp density interface

    Get PDF
    The effects of a sharp density interface and a rigid flat plate on oscillating-grid induced shear-free turbulence were investigated experimentally. A two-component laser-Doppler velocimeter was used to measure turbulence intensities in and above the density interface (with matched refractive indices) and near the rigid flat plate. Energy spectra, velocity correlations, and kinetic energy fluxes were also measured. Amplification of the horizontal turbulent velocity, coupled with a sharp reduction in the vertical turbulent velocity, was observed near both the density interface and the flat plate. These findings are in agreement with some previous results pertaining to shear-free turbulence near rigid walls (Hunt & Graham 1978) and near density interfaces (Long 1978). The results imply that, near the density interface, the turbulent kinetic energy in the vertical velocity component is only a small fraction of the total turbulent kinetic energy and indicate that the effects of the anisotropy created by the density interface or the flat plate are confined to the large turbulence scales

    Structure of Turbulence in Katabatic Flows below and above the Wind-Speed Maximum

    Full text link
    Measurements of small-scale turbulence made over the complex-terrain atmospheric boundary layer during the MATERHORN Program are used to describe the structure of turbulence in katabatic flows. Turbulent and mean meteorological data were continuously measured at multiple levels at four towers deployed along the East lower slope (2-4 deg) of Granite Mountain. The multi-level observations made during a 30-day long MATERHORN-Fall field campaign in September-October 2012 allowed studying of temporal and spatial structure of katabatic flows in detail, and herein we report turbulence and their variations in katabatic winds. Observed vertical profiles show steep gradients near the surface, but in the layer above the slope jet the vertical variability is smaller. It is found that the vertical (normal to the slope) momentum flux and horizontal (along the slope) heat flux in a slope-following coordinate system change their sign below and above the wind maximum of a katabatic flow. The vertical momentum flux is directed downward (upward) whereas the horizontal heat flux is downslope (upslope) below (above) the wind maximum. Our study therefore suggests that the position of the jet-speed maximum can be obtained by linear interpolation between positive and negative values of the momentum flux (or the horizontal heat flux) to derive the height where flux becomes zero. It is shown that the standard deviations of all wind speed components (therefore the turbulent kinetic energy) and the dissipation rate of turbulent kinetic energy have a local minimum, whereas the standard deviation of air temperature has an absolute maximum at the height of wind-speed maximum. We report several cases where the vertical and horizontal heat fluxes are compensated. Turbulence above the wind-speed maximum is decoupled from the surface, and follows the classical local z-less predictions for stably stratified boundary layer.Comment: Manuscript submitted to Boundary-Layer Meteorology (05 December 2014

    Turbulence structure near a sharp density interface

    Full text link

    An Energy-Water Corridor Along the US/Mexico Border: Changing the \u27Conversation\u27

    Get PDF
    Over the last decade, migration has become a divisive issue around the world. A large number of countries have erected barriers along their borders to prevent migration, leading to geopolitical tension. Climate change effects will likely exacerbate migration tensions, which will require bold and creative solutions to this difficult social predicament. Here we detail a plan to construct an energy-water corridor along a border that has been the focus of much attention recently: The U.S.-Mexico border. Our proposed solution helps to alleviate some of the negative effects of climate change, while providing energy and economic stimulus to an area that begs for sustainable development. The energy-water corridor will take advantage of the unique renewable energy resources along the border states and will use state-of-the-art water desalination and treatment systems to provide the resources for economic development in the region

    ASIRI : an ocean–atmosphere initiative for Bay of Bengal

    Get PDF
    Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 97 (2016): 1859–1884, doi:10.1175/BAMS-D-14-00197.1.Air–Sea Interactions in the Northern Indian Ocean (ASIRI) is an international research effort (2013–17) aimed at understanding and quantifying coupled atmosphere–ocean dynamics of the Bay of Bengal (BoB) with relevance to Indian Ocean monsoons. Working collaboratively, more than 20 research institutions are acquiring field observations coupled with operational and high-resolution models to address scientific issues that have stymied the monsoon predictability. ASIRI combines new and mature observational technologies to resolve submesoscale to regional-scale currents and hydrophysical fields. These data reveal BoB’s sharp frontal features, submesoscale variability, low-salinity lenses and filaments, and shallow mixed layers, with relatively weak turbulent mixing. Observed physical features include energetic high-frequency internal waves in the southern BoB, energetic mesoscale and submesoscale features including an intrathermocline eddy in the central BoB, and a high-resolution view of the exchange along the periphery of Sri Lanka, which includes the 100-km-wide East India Coastal Current (EICC) carrying low-salinity water out of the BoB and an adjacent, broad northward flow (∌300 km wide) that carries high-salinity water into BoB during the northeast monsoon. Atmospheric boundary layer (ABL) observations during the decaying phase of the Madden–Julian oscillation (MJO) permit the study of multiscale atmospheric processes associated with non-MJO phenomena and their impacts on the marine boundary layer. Underway analyses that integrate observations and numerical simulations shed light on how air–sea interactions control the ABL and upper-ocean processes.This work was sponsored by the U.S. Office of Naval Research (ONR) in an ONR Departmental Research Initiative (DRI), Air–Sea Interactions in Northern Indian Ocean (ASIRI), and in a Naval Research Laboratory project, Effects of Bay of Bengal Freshwater Flux on Indian Ocean Monsoon (EBOB). ASIRI–RAWI was funded under the NASCar DRI of the ONR. The Indian component of the program, Ocean Mixing and Monsoons (OMM), was supported by the Ministry of Earth Sciences of India.2017-04-2

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Small-Scale Anisotropy in Stably Stratified Turbulence; Inferences Based on Katabatic Flows

    No full text
    The focus of the current study is on the anisotropy of stably stratified turbulence that is not only limited to large scales and an inertial subrange but also penetrates to small-scale turbulence in the viscous/dissipation subrange on the order of the Kolmogorov scale. The anisotropy of buoyancy forces is well-known, including ensuing effects such as horizontal layering and pancakes structures. Laboratory experiments in the nineties by Van Atta and his students showed that the anisotropy penetrates to very small scales, but their experiments were performed only at a relatively low Reλ (i.e., at Taylor Reynolds numbers) and, therefore, did not provide convincing evidence of anisotropy penetration into viscous sublayers. Nocturnal katabatic flows having configurations of stratified parallel shear flows and developing on mountain slopes provide high Reynolds number data for testing the notion of anisotropy at viscous scales, but obtaining appropriate time series of the data representing stratified shear flows devoid of unwarranted atmospheric factors is a challenge. This study employed the “in situ” calibration of multiple hot-film-sensors collocated with a sonic anemometer that enabled obtaining a 90 min continuous time series of a “clean” katabatic flow. A detailed analysis of the structure functions was conducted in the inertial and viscous subranges at an Reλ around 1250. The results of DNS simulations by Kimura and Herring were employed for the interpretation of data

    On the sheared density interface of an entraining stratified fluid

    No full text
    corecore