5,095 research outputs found

    Gas sensor array system inspired on the sensory diversity and redundancy of the olfactory epithelium

    Get PDF
    AbstractThis paper presents a chemical sensing system that takes inspiration from the combination of sensory diversity and redundancy at the olfactory epithelium to enhance the chemical information obtained from the odorants. The system is based on commercial MOS sensors and achieves, first, diversity trough different types of MOS along with modulation of their temperatures, and second redundancy including 12 MOS sensors for each type (12×8) combined with a high-speed multiplexing system that allows connecting 16 load resistors with each and every one of the 96 sensors in about two seconds. Exposition of the system to ethanol, ammonia, and acetone at different concentrations shows how the system is able to capture a large amount of information of the identity and the concentration of the odorant

    NO-dependent CaMKII activation during β-adrenergic stimulation of cardiac muscle

    Get PDF
    Aims During β-adrenergic receptor (β-AR) stimulation, phosphorylation of cardiomyocyte ryanodine receptors by protein kinases may contribute to an increased diastolic Ca2+ spark frequency. Regardless of prompt activation of protein kinase A during β-AR stimulation, this appears to rely more on activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII), by a not yet identified signalling pathway. The goal of the present study was to identify and characterize the mechanisms which lead to CaMKII activation and elevated Ca2+ spark frequencies during β-AR stimulation in single cardiomyocytes in diastolic conditions. Methods and results Confocal imaging revealed that β-AR stimulation increases endogenous NO production in cardiomyocytes, resulting in NO-dependent activation of CaMKII and a subsequent increase in diastolic Ca2+ spark frequency. These changes of spark frequency could be mimicked by exposure to the NO donor GSNO and were sensitive to the CaMKII inhibitors KN-93 and AIP. In vitro, CaMKII became nitrosated and its activity remained increased independent of Ca2+ in the presence of GSNO, as assessed with biochemical assays. Conclusions β-AR stimulation of cardiomyocytes may activate CaMKII by a novel direct pathway involving NO, without requiring Ca2+ transients. This crosstalk between two established signalling pathways may contribute to arrhythmogenic diastolic Ca2+ release and Ca2+ waves during adrenergic stress, particularly in combination with cardiac diseases. In addition, NO-dependent activation of CaMKII is likely to have repercussions in many cellular signalling systems and cell type

    Cis-regulatory elements are harbored in Intron5 of the RUNX1 gene

    Get PDF
    BACKGROUND: Human RUNX1 gene is one of the most frequent target for chromosomal translocations associated with acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL). The highest prevalence in AML is noted with (8; 21) translocation; which represents 12 to 15% of all AML cases. Interestingly, all the breakpoints mapped to date in t(8;21) are clustered in intron 5 of the RUNX1 gene and intron 1 of the ETO gene. No homologous sequences have been found at the recombination regions; but DNase I hypersensitive sites (DHS) have been mapped to the areas of the genes involved in t(8;21). Presence of DHS sites is commonly associated with regulatory elements such as promoters, enhancers and silencers, among others. RESULTS: In this study we used a combination of comparative genomics, cloning and transfection assays to evaluate potential regulatory elements located in intron 5 of the RUNX1 gene. Our genomic analysis identified nine conserved non-coding sequences that are evolutionarily conserved among rat, mouse and human. We cloned two of these regions in pGL-3 Promoter plasmid in order to analyze their transcriptional regulatory activity. Our results demonstrate that the identified regions can indeed regulate transcription of a reporter gene in a distance and position independent manner; moreover, their transcriptional effect is cell type specific. CONCLUSIONS: We have identified nine conserved non coding sequence that are harbored in intron 5 of the RUNX1 gene. We have also demonstrated that two of these regions can regulate transcriptional activity in vitro. Taken together our results suggest that intron 5 of the RUNX1 gene contains multiple potential cis-regulatory elements

    Live Demonstration:Neuromorphic Sensory Integration for Combining Sound Source Localization and Collision Avoidance

    Get PDF
    The brain is able to solve complex tasks in real time by combining different sensory cues with previously acquired knowledge. Inspired by the brain, we designed a neuromorphic demonstrator which combines auditory and visual input to find an obstacle free direction closest to the sound source. The system consists of two event-based sensors (the eDVS for vision and the NAS for audition) mounted onto a pan-tilt unit and a spiking neural network implemented on the SpiNNaker platform. By combining the different sensory information, the demonstrator is able to point at a sound source direction while avoiding obstacles in real time

    A novel role for proline- and acid-rich basic region leucine zipper (PAR bZIP) proteins in the transcriptional regulation of a BH3-only proapoptotic gene.

    Get PDF
    Proline- and acid-rich (PAR) basic region leucine zipper (bZIP) proteins thyrotroph embryonic factor (TEF), D-site-binding protein (DBP), and hepatic leukemia factor have been involved in neurotransmitter homeostasis and amino acid metabolism. Here we demonstrate a novel role for these proteins in the transcriptional control of a BH3-only gene. PAR bZIP proteins are able to transactivate the promoter of bcl-gS. This promoter is particularly responsive to TEF activation and is silenced by NFIL3, a repressor that shares the consensus binding site with PAR bZIP proteins. Consistently, transfection of TEF induces the expression of endogenous bcl-gS in cancer cells, and this induction is independent of p53. A naturally occurring variant of DBP (tDBP), lacking the transactivation domain, has been identified and shown to impede the formation of active TEF dimers in a competitive manner and to reduce the TEF-dependent induction of bcl-gS. Of note, treatment of cancer cells with etoposide induces TEF activation and promotes the expression of bcl-gS. Furthermore, blockade of bcl-gS or TEF expression by a small interfering RNA strategy or transfection with tDBP significantly reduces the etoposide-mediated apoptotic cell death. These findings represent the first described role for PAR bZIP proteins in the regulation of a gene involved in the execution of apoptosis

    Comparative ergonomic workflow and user experience analysis of MRI versus fluoroscopy-guided vascular interventions:an iliac angioplasty exemplar case study

    Get PDF
    Purpose A methodological framework is introduced to assess and compare a conventional fluoroscopy protocol for peripheral angioplasty with a new magnetic resonant imaging (MRI)-guided protocol. Different scenarios were considered during interventions on a perfused arterial phantom with regard to time-based and cognitive task analysis, user experience and ergonomics. Methods Three clinicians with different expertise performed a total of 43 simulated common iliac angioplasties (9 fluoroscopic, 34 MRI-guided) in two blocks of sessions. Six different configurations for MRI guidance were tested in the first block. Four of them were evaluated in the second block and compared to the fluoroscopy protocol. Relevant stages’ durations were collected, and interventions were audio-visually recorded from different perspectives. A cued retrospective protocol analysis (CRPA) was undertaken, including personal interviews. In addition, ergonomic constraints in the MRI suite were evaluated. Results Significant differences were found when comparing the performance between MRI configurations versus fluoroscopy. Two configurations [with times of 8.56 (0.64) and 9.48 (1.13) min] led to reduce procedure time for MRI guidance, comparable to fluoroscopy [8.49 (0.75) min]. The CRPA pointed out the main influential factors for clinical procedure performance. The ergonomic analysis quantified musculoskeletal risks for interventional radiologists when utilising MRI. Several alternatives were suggested to prevent potential low-back injuries. Conclusions This work presents a step towards the implementation of efficient operational protocols for MRI-guided procedures based on an integral and multidisciplinary framework, applicable to the assessment of current vascular protocols. The use of first-user perspective raises the possibility of establishing new forms of clinical training and education

    Key role of quinone in the mechanism of respiratory complex I

    Get PDF
    Complex I is the first and the largest enzyme of respiratory chains in bacteria and mitochondria. The mechanism which couples spatially separated transfer of electrons to proton translocation in complex I is not known. Here we report five crystal structures of T. thermophilus enzyme in complex with NADH or quinone-like compounds. We also determined cryo-EM structures of major and minor native states of the complex, differing in the position of the peripheral arm. Crystal structures show that binding of quinone-like compounds (but not of NADH) leads to a related global conformational change, accompanied by local re-arrangements propagating from the quinone site to the nearest proton channel. Normal mode and molecular dynamics analyses indicate that these are likely to represent the first steps in the proton translocation mechanism. Our results suggest that quinone binding and chemistry play a key role in the coupling mechanism of complex I
    corecore