129 research outputs found

    Explicit computations of low lying eigenfunctions for the quantum trigonometric Calogero-Sutherland model related to the exceptional algebra E7

    Full text link
    In the previous paper math-ph/0507015 we have studied the characters and Clebsch-Gordan series for the exceptional Lie algebra E7 by relating them to the quantum trigonometric Calogero-Sutherland Hamiltonian with coupling constant K=1. Now we extend that approach to the case of general K

    Generating functions and multiplicity formulas: the case of rank two simple Lie algebras

    Full text link
    A procedure is described that makes use of the generating function of characters to obtain a new generating function HH giving the multiplicities of each weight in all the representations of a simple Lie algebra. The way to extract from HH explicit multiplicity formulas for particular weights is explained and the results corresponding to rank two simple Lie algebras shown

    The Trp73 Mutant Mice: A Ciliopathy Model That Uncouples Ciliogenesis From Planar Cell Polarity

    Get PDF
    p73 transcription factor belongs to one of the most important gene families in vertebrate biology, the p53-family. Trp73 gene, like the other family members, generates multiple isoforms named TA and DNp73, with different and, sometimes, antagonist functions. Although p73 shares many biological functions with p53, it also plays distinct roles during development. Trp73 null mice (p73KO from now on) show multiple phenotypes as gastrointestinal and cranial hemorrhages, rhinitis and severe central nervous system defects. Several groups, including ours, have revisited the apparently unrelated phenotypes observed in total p73KO and revealed a novel p73 function in the organization of ciliated epithelia in brain and trachea, but also an essential role as regulator of ependymal planar cell polarity. Unlike p73KO or TAp73KO mice, tumor-prone Trp53−/− mice (p53KO) do not present ependymal ciliary or planar cell polarity defects, indicating that regulation of ciliogenesis and PCP is a p73-specific function. Thus, loss of ciliary biogenesis and epithelial organization might be a common underlying cause of the diverse p73KO-phenotypes, highlighting Trp73 role as an architect of the epithelial tissue. In this review we would like to discuss the data regarding p73 role as regulator of ependymal cell ciliogenesis and PCP, supporting the view of the Trp73-mutant mice as a model that uncouples ciliogenesis from PCP and a possible model of human congenital hydrocephalus

    Physics and Mathematics of Calogero particles

    Get PDF
    We give a review of the mathematical and physical properties of the celebrated family of Calogero-like models and related spin chains.Comment: Version to appear in Special Issue of Journal of Physics A: Mathematical and Genera

    Current status of MELCOR 2.2 for fusion safety analyses

    Get PDF
    MELCOR is an integral code developed by Sandia National Laboratories (SNL) for the US Nuclear Regulatory Commission (USNRC) to perform severe accident analyses of Light Water Reactors (LWR). More recently, MELCOR capabilities are being extended also to analyze non-LWR fission technologies. Within the European MELCOR User Group (EMUG), organized in the framework of USNRC Cooperative Severe Accident Research Program (CSARP), an activity on the evaluation of the applicability of MELCOR 2.2 for fusion safety analyses has been launched and it has been coordinated by ENEA. The aim of the activity was to identify the physical models to be possibly implemented in MELCOR 2.2 necessary for fusion safety analyses, and to check if those models are already available in MELCOR 1.8.6 for fusion version, developed by Idaho National Laboratory (INL). From this activity, a list of modeling needs emerged from the safety analyses of fusion-related installations have been identified and described. Then, the importance of the various needs, intended as the priority for model implementation in the MELCOR 2.2 code, has been evaluated according to the technical expert judgement of the authors. In the present paper, the identified modeling needs are discussed. The ultimate goal would be to propose to have a single integrated MELCOR 2.2 code release capable to cover both fission and fusion applications

    Current status of Melcor 2.2 for fusion safety analyses

    Get PDF
    MELCOR is an integral code developed by Sandia National Laboratories (SNL) for the US Nuclear Regulatory Commission (USNRC) to perform severe accident analyses of Light Water Reactors (LWR). More recently, MELCOR capabilities are being extended also to analyze non-LWR fission technologies. Within the European MELCOR User Group (EMUG), organized in the framework of the USNRC Cooperative Severe Accident Research Program (CSARP), an activity on the evaluation of the applicability of MELCOR 2.2 for fusion safety analyses has been launched and it has been coordinated by ENEA. The aim of the activity was to identify the physical models to be possibly implemented in MELCOR 2.2 necessary for fusion safety analyses, and to check if those models are already available in MELCOR 1.8.6 fusion version, developed by Idaho National Laboratory (INL). From this activity, a list of modeling needs that emerged from the safety analyses of fusion-related installations has been identified and described. Then, the importance of the various needs, intended as the priority for model implementation in the MELCOR 2.2 code, has been evaluated according to the technical expert judgment of the authors. In the present paper, the identified modeling needs are discussed. The ultimate goal would be to propose to have a single integrated MELCOR 2.2 code release capable to cover both fission and fusion applications
    corecore