23,177 research outputs found

    copulaedas: An R Package for Estimation of Distribution Algorithms Based on Copulas

    Get PDF
    The use of copula-based models in EDAs (estimation of distribution algorithms) is currently an active area of research. In this context, the copulaedas package for R provides a platform where EDAs based on copulas can be implemented and studied. The package offers complete implementations of various EDAs based on copulas and vines, a group of well-known optimization problems, and utility functions to study the performance of the algorithms. Newly developed EDAs can be easily integrated into the package by extending an S4 class with generic functions for their main components. This paper presents copulaedas by providing an overview of EDAs based on copulas, a description of the implementation of the package, and an illustration of its use through examples. The examples include running the EDAs defined in the package, implementing new algorithms, and performing an empirical study to compare the behavior of different algorithms on benchmark functions and a real-world problem

    Internal Heating of Old Neutron Stars: Contrasting Different Mechanisms

    Full text link
    The thermal emission detected from the millisecond pulsar J0437-4715 is not explained by standard cooling models of neutron stars without a heating mechanism. We investigated three heating mechanisms controlled by the rotational braking of the pulsar: breaking of the solid crust, superfluid vortex creep, and non-equilibrium reactions ('rotochemical heating'). We find that the crust cracking mechanism does not produce detectable heating. Given the dependence of the heating mechanisms on spin-down parameters, which leads to different temperatures for different pulsars, we study the thermal evolution for two types of pulsars: young, slowly rotating 'classical' pulsars and old, fast rotating millisecond pulsars (MSPs). We find that the rotochemical heating and vortex creep mechanism can be important both for classical pulsars and MSPs.Comment: VIII Symposium in Nuclear Physics and Applications: Nuclear and Particle Astrophysics. Appearing in the American Institute of Physics (AIP) conference proceeding

    Multidimensional quantum cosmic models: New solutions and gravitational waves

    Get PDF
    This paper contains a discussion on the quantum cosmic models, starting with the interpretation that all of the accelerating effects in the current universe are originated from the existence of a nonzero entropy of entanglement. In such a realm, we obtain new cosmic solutions for any arbitrary number of spatial dimensions, studying the stability of these solutions, so as the emergence of gravitational waves in the realm of the most general models.Comment: 7 pages, 1 Figure, LaTe

    A shortest-path based clustering algorithm for joint human-machine analysis of complex datasets

    Full text link
    Clustering is a technique for the analysis of datasets obtained by empirical studies in several disciplines with a major application for biomedical research. Essentially, clustering algorithms are executed by machines aiming at finding groups of related points in a dataset. However, the result of grouping depends on both metrics for point-to-point similarity and rules for point-to-group association. Indeed, non-appropriate metrics and rules can lead to undesirable clustering artifacts. This is especially relevant for datasets, where groups with heterogeneous structures co-exist. In this work, we propose an algorithm that achieves clustering by exploring the paths between points. This allows both, to evaluate the properties of the path (such as gaps, density variations, etc.), and expressing the preference for certain paths. Moreover, our algorithm supports the integration of existing knowledge about admissible and non-admissible clusters by training a path classifier. We demonstrate the accuracy of the proposed method on challenging datasets including points from synthetic shapes in publicly available benchmarks and microscopy data

    Asynchronous Announcements

    Full text link
    We propose a multi-agent epistemic logic of asynchronous announcements, where truthful announcements are publicly sent but individually received by agents, and in the order in which they were sent. Additional to epistemic modalities the logic contains dynamic modalities for making announcements and for receiving them. What an agent believes is a function of her initial uncertainty and of the announcements she has received. Beliefs need not be truthful, because announcements already made may not yet have been received. As announcements are true when sent, certain message sequences can be ruled out, just like inconsistent cuts in distributed computing. We provide a complete axiomatization for this \emph{asynchronous announcement logic} (AA). It is a reduction system that also demonstrates that any formula in AAAA is equivalent to one without dynamic modalities, just as for public announcement logic. The model checking complexity is in PSPACE. A detailed example modelling message exchanging processes in distributed computing in AAAA closes our investigation
    • …
    corecore