34,449 research outputs found

    Improving Ontology Recommendation and Reuse in WebCORE by Collaborative Assessments

    Get PDF
    In this work, we present an extension of CORE [8], a tool for Collaborative Ontology Reuse and Evaluation. The system receives an informal description of a specific semantic domain and determines which ontologies from a repository are the most appropriate to describe the given domain. For this task, the environment is divided into three modules. The first component receives the problem description as a set of terms, and allows the user to refine and enlarge it using WordNet. The second module applies multiple automatic criteria to evaluate the ontologies of the repository, and determines which ones fit best the problem description. A ranked list of ontologies is returned for each criterion, and the lists are combined by means of rank fusion techniques. Finally, the third component uses manual user evaluations in order to incorporate a human, collaborative assessment of the ontologies. The new version of the system incorporates several novelties, such as its implementation as a web application; the incorporation of a NLP module to manage the problem definitions; modifications on the automatic ontology retrieval strategies; and a collaborative framework to find potential relevant terms according to previous user queries. Finally, we present some early experiments on ontology retrieval and evaluation, showing the benefits of our system

    Broadband suppression of backscattering at optical frequencies using low permittivity dielectric spheres

    Get PDF
    The exact suppression of backscattering from rotationally symmetric objects requires dual symmetric materials where ϵr=μr{\epsilon_r} = {\mu_r}. This prevents their design at many frequency bands, including the optical one, because magnetic materials are not available. Electromagnetically small non-magnetic spheres of large permittivity offer an alternative. They can be tailored to exhibit balanced electric and magnetic dipole polarizabilities, which result in approximate zero backscattering. In this case, the effect is inherently narrowband. Here, we put forward a different alternative that allows broadband functionality: Electromagnetically large spheres made from low permittivity materials. The effect occurs in a parameter regime that approaches the trivial ϵr→μr=1{\epsilon_r} \to {\mu_r} =1 case, where approximate duality is met in a weakly wavelength dependence fashion. Despite the low permittivity, the overall scattering response of the spheres is still significant. Radiation patterns from these spheres are shown to be highly directive across an octave spanning band. The effect is analytically and numerically shown using the Mie coefficients.Comment: 6 Figure

    The Applied Nutrition Project of Eastern Kenya – An Initiative for Reducing Hunger and Malnutrition

    Get PDF
    Sustainable development is the only kind of development possible for help in the third world. Due to various historical, political, geographic and climatic conditions the divergence between those countries providing and those receiving help is so vast that donations of labor an/or money is simply not enough. Rather, communities have to be taught to support and develop themselves during the receipt of aid and especially after the help pulls out. It is our goal in this article to summarize one such »sustainable development « project. As volunteers for AMREF (African Medical and Research Foundation), we worked with the remarkable Makueni Applied Nutrition Project in eastern Kenya in the summer of 2001. Our job was to visit the various locations in this semiarid and arid environment and to write a report on the situation of the diverse parts of the project. The Applied Nutrition Project (ANP) started in 1984 and serves as an excellent example of the significant help that can be provided to needy areas of the world with a multifaceted approach

    Recent Technological Developments on LGAD and iLGAD Detectors for Tracking and Timing Applications

    Get PDF
    This paper reports the last technological development on the Low Gain Avalanche Detector (LGAD) and introduces a new architecture of these detectors called inverse-LGAD (iLGAD). Both approaches are based on the standard Avalanche Photo Diodes (APD) concept, commonly used in optical and X-ray detection applications, including an internal multiplication of the charge generated by radiation. The multiplication is inherent to the basic n++-p+-p structure, where the doping profile of the p+ layer is optimized to achieve high field and high impact ionization at the junction. The LGAD structures are optimized for applications such as tracking or timing detectors for high energy physics experiments or medical applications where time resolution lower than 30 ps is required. Detailed TCAD device simulations together with the electrical and charge collection measurements are presented through this work.Comment: Keywords: silicon detectors, avalanche multiplication, timing detectors, tracking detectors. 8 pages. 8 Figure

    Optical Absorption Spectra of Ag11 Isomers by First-Principles Theoretical Spectroscopy with Time-dependent Density Functional Theory

    Full text link
    The optical absorption spectrum of the three most stable isomers of the Ag11 system was calculated using the time-dependent density functional theory, with the generalized gradient approximation for the exchange and correlation potential, and a relativistic pseudopotential parametrization for the modelling of the ion-electron interaction. The computational scheme is based on a real space code, where the photoabsorption spectrum is calculated by using the formalism developed by Casida. The significantly different spectra of the three isomers permit the identification of the ground-state configuration predominantly present in the laboratory beams in base to a comparison between the calculated photoabsorption spectrum of the most stable configuration of Ag11 and the measured spectra of medium-size silver clusters trapped in noble gas Ar and Ne matrices at different temperatures. This assignment is confirmed by the fact that this isomer has the lowest calculated energy.Comment: 6 pages, 3 color figures, submitted to Chem. Phys. Let

    Direct observation of melting in a 2-D superconducting vortex lattice

    Full text link
    Topological defects such as dislocations and disclinations are predicted to determine the twodimensional (2-D) melting transition. In 2-D superconducting vortex lattices, macroscopic measurements evidence melting close to the transition to the normal state. However, the direct observation at the scale of individual vortices of the melting sequence has never been performed. Here we provide step by step imaging through scanning tunneling spectroscopy of a 2-D system of vortices up to the melting transition in a focused-ion-beam nanodeposited W-based superconducting thin film. We show directly the transition into an isotropic liquid below the superconducting critical temperature. Before that, we find a hexatic phase, characterized by the appearance of free dislocations, and a smectic-like phase, possibly originated through partial disclination unbinding. These results represent a significant step in the understanding of melting of 2-D systems, with impact across several research fields, such as liquid crystal molecules, or lipids in membranes.Comment: Submitted to Nature Physic
    • …
    corecore