4,043 research outputs found

    Magnetism and topological phases in an interacting decorated honeycomb lattice with spin-orbit coupling

    Full text link
    We study the interplay between spin-orbit coupling (SOC) and Coulomb repulsion in a Hubbard model on a decorated honeycomb lattice which leads to a plethora of phases. While a quantum spin hall insulator is stable at weak Coulomb repulsion and moderate SOC, a semimetallic phase emerges at large SOC in a broad range of Coulomb repulsion. This semimetallic phase has topological properties not observed in conventional metals such as a finite, non-quantized spin Hall conductivity. At large Coulomb repulsion and negligible spin-orbit coupling, electronic correlations stabilize a resonance valence bond (RVB) spin liquid state in contrast to the classical antiferromagnetic state predicted by mean-field theory. Under sufficiently strong SOC, such RVB state is transformed into a magnetic insulator consisting on S~3/2 localized moments on a honeycomb lattice with antiferromagnetic order and topological features.Comment: 13 pages, 10 figure

    Multiple path prediction for traffic scenes using LSTMs and mixture density models

    Get PDF
    This work presents an analysis of predicting multiple future paths of moving objects in traffic scenes by leveraging Long Short-Term Memory architectures (LSTMs) and Mixture Density Networks (MDNs) in a single-shot manner. Path prediction allows estimating the future positions of objects. This is useful in important applications such as security monitoring systems, Autonomous Driver Assistance Systems and assistive technologies. Normal approaches use observed positions (tracklets) of objects in video frames to predict their future paths as a sequence of position values. This can be treated as a time series. LSTMs have achieved good performance when dealing with time series. However, LSTMs have the limitation of only predicting a single path per tracklet. Path prediction is not a deterministic task and requires predicting with a level of uncertainty. Predicting multiple paths instead of a single one is therefore a more realistic manner of approaching this task. In this work, predicting a set of future paths with associated uncertainty was archived by combining LSTMs and MDNs. The evaluation was made on the KITTI and the CityFlow datasets on three type of objects, four prediction horizons and two different points of view (image coordinates and birds-eye vie

    Non-modal analysis of spectral element methods: Towards accurate and robust large-eddy simulations

    Get PDF
    We introduce a \textit{non-modal} analysis technique that characterizes the diffusion properties of spectral element methods for linear convection-diffusion systems. While strictly speaking only valid for linear problems, the analysis is devised so that it can give critical insights on two questions: (i) Why do spectral element methods suffer from stability issues in under-resolved computations of nonlinear problems? And, (ii) why do they successfully predict under-resolved turbulent flows even without a subgrid-scale model? The answer to these two questions can in turn provide crucial guidelines to construct more robust and accurate schemes for complex under-resolved flows, commonly found in industrial applications. For illustration purposes, this analysis technique is applied to the hybridized discontinuous Galerkin methods as representatives of spectral element methods. The effect of the polynomial order, the upwinding parameter and the P\'eclet number on the so-called \textit{short-term diffusion} of the scheme are investigated. From a purely non-modal analysis point of view, polynomial orders between 22 and 44 with standard upwinding are well suited for under-resolved turbulence simulations. For lower polynomial orders, diffusion is introduced in scales that are much larger than the grid resolution. For higher polynomial orders, as well as for strong under/over-upwinding, robustness issues can be expected. The non-modal analysis results are then tested against under-resolved turbulence simulations of the Burgers, Euler and Navier-Stokes equations. While devised in the linear setting, our non-modal analysis succeeds to predict the behavior of the scheme in the nonlinear problems considered

    Implicit large-eddy simulation of compressible flows using the Interior Embedded Discontinuous Galerkin method

    Get PDF
    We present a high-order implicit large-eddy simulation (ILES) approach for simulating transitional turbulent flows. The approach consists of an Interior Embedded Discontinuous Galerkin (IEDG) method for the discretization of the compressible Navier-Stokes equations and a parallel preconditioned Newton-GMRES solver for the resulting nonlinear system of equations. The IEDG method arises from the marriage of the Embedded Discontinuous Galerkin (EDG) method and the Hybridizable Discontinuous Galerkin (HDG) method. As such, the IEDG method inherits the advantages of both the EDG method and the HDG method to make itself well-suited for turbulence simulations. We propose a minimal residual Newton algorithm for solving the nonlinear system arising from the IEDG discretization of the Navier-Stokes equations. The preconditioned GMRES algorithm is based on a restricted additive Schwarz (RAS) preconditioner in conjunction with a block incomplete LU factorization at the subdomain level. The proposed approach is applied to the ILES of transitional turbulent flows over a NACA 65-(18)10 compressor cascade at Reynolds number 250,000 in both design and off-design conditions. The high-order ILES results show good agreement with a subgrid-scale LES model discretized with a second-order finite volume code while using significantly less degrees of freedom. This work shows that high-order accuracy is key for predicting transitional turbulent flows without a SGS model.Comment: 54th AIAA Aerospace Sciences Meeting, AIAA SciTech, 201

    On-site approximation for spin-orbit coupling in LCAO density functional methods

    Full text link
    We propose a computational method that simplifies drastically the inclusion of spin-orbit interaction in density functional theory implemented on localised atomic orbital basis sets. Our method is based on a well-known procedure for obtaining pseudopotentials from atomic relativistic 'ab initio' calculations and on an on-site approximation for the spin-orbit matrix elements. We have implemented the technique in the SIESTA code, and we show that it provides accurate results for the overall band structure and splittings of group IV and III-IV semiconductors as well as for 5d metals.Comment: 8 pages, 4 figures. Published in J. Phys.: Condens. Matter 18 7999-8013, 2006. Some errata correcte
    • 

    corecore